SciELO - Scientific Electronic Library Online

 
vol.65Degradation of endosulfan I and endosulfan II in the aquatic environment: A proposed enzymatic kinetic model that takes into account adsorption/desorption of the pesticide by colloidal and/or sediment particlesPh3P catalyzed synthesis of alkyl 2-(4-oxopyridin-1(4H)-yl)acrylates by nucleophilic addition to alkyl propiolates índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


South African Journal of Chemistry

versión On-line ISSN 1996-840X
versión impresa ISSN 0379-4350

Resumen

KRIEL, Frederik H.  y  COATES, Judy. Synthesis and antitumour activity of gold(I) and silver(I) complexes of hydrazine-bridged diphosphine ligands. S.Afr.j.chem. (Online) [online]. 2012, vol.65, pp.271-279. ISSN 1996-840X.

A known synthetic route was used to prepare two known hydrazine-bridged phosphine ligands and four new ligands with variable groups on the hydrazine bridge (methyl and ethyl), as well as positions on the aryl phosphine groups (phenyl, methoxyphenyl, dimethylaminophenyl). A range of gold(I) and silver(I) complexes were synthesized utilizing these phosphine ligands. Both the phosphine-bridged dimetal and cationic bis(diphosphine) metal complexes were isolated. An interesting phenomenon of the spontaneous oxidation of gold(I) to gold(III) (and reduction of gold(IIII) to gold(I)) upon complexation with ((N,N-dimethyl)-4-aminophenyl)dialkylhydrazine ligands is described. Thirteen of the synthesized complexes were subjected to anticancer activity screening against HeLa, Jurkat, A2780, cisplatin-resistant A2780, CoLo 320 DM and MCF7. Most of the complexes were found to inhibit the cancerous cells at low µM concentrations and in some cases nM concentrations. Two of the complexes were tested for their ability to reduce the mitochondrial membrane potential of PBMC cells as a possible mechanism of action of anticancer activity.

Palabras clave : Gold(I); silver(I); hydrazine; diphosphine; antitumour; anticancer; mitochondrial membrane potential.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons