SciELO - Scientific Electronic Library Online

 
vol.65Convenient reduction of carbonyl compounds to their corresponding alcohols with NaBH4/(NH4)2C2O4 systemThe facile synthesis of N-aryl isoxazolones as DNA intercalators under solvent-free conditions using microwave irradiation índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


South African Journal of Chemistry

versão On-line ISSN 1996-840X
versão impressa ISSN 0379-4350

Resumo

ZHANG, Dongfang. Effects of deposited metallic silver on nano-ZnO for the environmental purification of dye pollutants. S.Afr.j.chem. (Online) [online]. 2012, vol.65, pp.98-103. ISSN 1996-840X.

Silver-deposited nano-ZnO samples with different Ag loadings were prepared by a one-pot solvothermal method. The structure, physico-chemical and optical properties of the products were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), diffuse reflectance spectroscopy (DRS) and photoluminescence spectra (PLS). The experimental results show that the prepared nanometer zinc oxide powders have a narrow size distribution of 40-60 nm, and their crystal forms can be assigned to hexagonal wurtzite structures. Moreover, the photocatalytic activity of the samples was examined by using photocatalytic oxidation of methylene blue (MB), as a model reaction, and the effects of the noble metal content on the photocatalytic activity were investigated. The results indicate that the photocatalytic activity of the ZnO nanoparticles can be greatly improved by depositing appropriate amounts of noble metal on their surfaces. In addition, a mechanism was proposed in order to account for the enhanced activity. It is evident that the effective lifetime of photogenerated holes is prolonged by electron-trapping of the metallic silver on the surface of the ZnO nanoparticles. The metal deposits serve as electron sinks, which lead to an enhanced rate of dioxygen reduction, facilitating the generation of hydroxyl radicals, and thereby increasing the photocatalytic activity.

Palavras-chave : Noble metal; electron scavengers; heterogeneous photocatalysis.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons