SciELO - Scientific Electronic Library Online

 
vol.61Methyl iodide oxidative addition to rhodium(I) complexes: A DFT and NMR study of [Rh(FcCOCHCOCf3)(CO)(pph3)] and the rhodium(III) reaction productsNBS as a powerful catalyst for the synthesis of β-hydroxysulphides with thiolysis of epoxides under mild reaction conditions índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


South African Journal of Chemistry

versão On-line ISSN 1996-840X

Resumo

CHEN, Zhaoyong et al. Performance and structure of LiNi0.5Mn1.5O4 prepared from various Ni precursors for lithium ion batteries. S.Afr.j.chem. (Online) [online]. 2008, vol.61, pp. 157-161. ISSN 1996-840X.

LiNi0,5Mn1,5O4 compounds were prepared through a solid-state reaction using various Ni precursors. The effect of the precursors on the electrochemical performance of LiNi0,5Mn1,5O4 was investigated. LiNi0,5Mn1,5O4 made from Ni(NO3)2 ● 6H2O shows the best charge-discharge performance. The reversible capacity of LiNi0,5Mn1,5O4 is about 145 mA h g-1 and remained at 143 mA h g-1 after 10 cycles at 3.0 to 5.0 V. The XRD results showed that the precursors and dispersion method had significant effects on their structures. Pure spinel phase can be obtained with a high energy ball-milling method and Ni(NO3)2●6H2O as precursor. A trace amount of the NiO phase was detected in LiNi0,5Mn1,5O4 with the manual grinding method when Ni(CH3COO)2●6H2O, NiO and Ni2O3 were used as precursors.

Palavras-chave : LiNi0,5Mn1,5O4; spinel; cathode materials; lithium ion battery.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License