SciELO - Scientific Electronic Library Online

 
vol.49 número1Factors affecting pre-weaning kid mortality in South African Angora goatsDetermination and comparison of digestion kinetics of two fibre sources in geese (Anseris) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


South African Journal of Animal Science

versão On-line ISSN 2221-4062
versão impressa ISSN 0375-1589

Resumo

ZHANG, J.; HE, H.  e  LIU, A.F.. Identification of muscle and adipose gene expression patterns in lean and obese pigs. S. Afr. j. anim. sci. [online]. 2019, vol.49, n.1, pp.71-79. ISSN 2221-4062.  http://dx.doi.org/10.4314/sajas.v49i1.9.

Obesity is a major risk factor of preventable deaths worldwide, with increasing rates being observed in adults and children. To understand the mechanisms of obesity development, genetically lean (Duroc strain) and obese (Rongchang strain) pigs were used to identify potential differences in muscle and adipose development patterns following consumption of an identical diet for 180 days. Lean pigs had a significantly higher lean percentage (67.79% versus 44.71%) and lower obesity index (0.68 versus 0.84) than obese pigs. They also exhibited significantly lower adipocyte volumes and higher myofibre cross-sectional areas. Quantitative polymerase chain reaction showed that lean pigs had a significantly higher expression of muscle growth-related genes and lower expression of lipogenesis-related genes. By contrast, obese pigs had higher expression of a myostatin-related gene and lower expression of lipolysis-related genes. Additionally, the mitochondrial DNA copy number was higher in the muscle and lower in adipose tissue in lean compared with obese pigs. These results indicate that lean pigs have a distinct development pattern from obese pigs, involving lipogenesis, muscle growth, and energy metabolism. This study provides a basis for exploring the mechanisms of adipose deposition and muscle growth in obesity.

Palavras-chave : Obesity; mitochondrial DNA; Sus scrofa.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons