SciELO - Scientific Electronic Library Online

 
vol.42 número3Effect of butyric acid supplementation and whole wheat inclusion on the performance and carcass traits of broilersThe fatty acid composition of muscles and fat depots of ostriches as influenced by genotype índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


South African Journal of Animal Science

versão On-line ISSN 2221-4062

Resumo

KNETTER, S.M.; T.J. BAXA, K.Y. Chung; JOHNSON, B.J.  e  MINTON, J.E.. Steroid implants and markers of bone turnover in steers. S. Afr. j. anim. sci. [online]. 2012, vol.42, n.3, pp. 249-255. ISSN 2221-4062.

Steroidal implants are used extensively in beef cattle management to take advantage of well-documented improvements in growth performance and efficiency. In addition to muscle growth, steroids bring about changes in bone and cartilage formation, hastening bone ageing. The current study was designed to test the hypothesis that recently identified indicators of bone and cartilage turnover could be detected in the peripheral circulation, and that these markers might reflect accelerated ageing effects of the widely used steroidal implants, trenbolone acetate (TBA) and estradiol-Πβ (E2). Thirty-two crossbred yearling steers were given one of four treatments to determine whether these markers of bone turnover could be detected and reflect steroid-induced bone maturity in the periphery: non-implanted controls; 25.7 mg estradiol-Πβ (E2); 120 mg trenbolone acetate (TBA); or 120 mg TBA and 24 mg E2 (T+E). Blood was collected on days 0, 7, 14 and 28 and serum analysed by ELISA for concentrations of IGF-I, osteocalcin, C-terminal telopeptides of Type I collagen (CTX-I) and C-terminal telopeptides of Type II collagen (CTX-II), as markers of the somatotropic-endocrine axis, bone formation, bone resorption and cartilage resorption, respectively. Circulating IGF-I was greater in E2 or T+E treated steers than controls on days 7 and 14. Osteocalcin was unaffected by treatment, but increased from day 0 on days 7, 14 and 28. Treatment did not affect CTX-I. However, CTX-II was elevated in the treated animals as opposed to the controls. Although these markers of bone and cartilage turnover are detectable, results suggest that implant-induced changes are not evident in the circulatory system.

Palavras-chave : Bone; cartilage; cattle; growth; trenbolone acetate.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License