SciELO - Scientific Electronic Library Online

vol.40 issue4Efficacy of lactobacilli to normalize production of corticosterone induced by unpleasant handling of broilersEstimation of genetic parameters for carcass traits in Japanese quail using Bayesian methods author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand



Related links

  • On index processCited by Google
  • On index processSimilars in Google


South African Journal of Animal Science

On-line version ISSN 2221-4062
Print version ISSN 0375-1589


VAN NIEKERK, W.A.; HASSEN, Abubeker  and  BECHAZ, F.M.. Influence of growth stage at harvest on fermentative characteristics of Panicum maximum silage. S. Afr. j. anim. sci. [online]. 2010, vol.40, n.4, pp.334-341. ISSN 2221-4062.

An experiment was conducted to investigate the influence of stage of growth at harvest on fermentative characteristics of Panicum maximum silage. The treatments were three different growth stages (early vegetative, boot and full bloom stage) that were ensiled directly or wilted prior to ensiling. Directly ensiled and wilted forage material were mixed prior to ensiling with molasses at 12 and 8 kg/ton dry matter, respectively. Thereafter, each treatment was ensiled in 12 one litre glass jars (bottles). From each treatment, samples of the silage were taken from three bottles at 0, 7, 21 and 120 d post-ensiling for analysis of fermentative characteristics. Growth stage in directly cut silage had no effect on silage pH between days 0 and 21. In contrast, within the wilted groups, a lower pH was observed at day 7 when the plants were harvested at the boot stage than at an early vegetative or full bloom stage. In both directly cut as well as prior wilted silage, a higher lactic acid concentration was recorded on day 7 in the boot stage silage compared to the full bloom stage silage, but on day 21 the boot stage had a lower lactic acid concentration than that of the full bloom stage silage. Growth stage had no effect on the acetic acid concentration on day 7. However, on days 21 and 120 the full bloom stage had a higher acetic acid concentration when the material was directly ensiled. In contrast, in prior wilted silage a higher acetic acid concentration was found in the early vegetative stage silage than in the full bloom stage silage at 120 days post-ensiling. Total nitrogen was lower in the full bloom stage silage than in the early vegetative and boot stage silages. A higher level of ammonia nitrogen was recorded at days 7 and 21 for the early vegetative stage silage as compared to the boot stage silage. A similar trend was revealed in the prior wilted groups between days 0 and 21. Harvesting at the boot growth stage consistently resulted in a good fermentation process with desirable fermentation end products (low pH and higher lactic acid concentration) up to a period of 21 days, but when compared at 120 days post-ensiling the differences between boot and bloom stages were not clearly observed in terms of fermentative attributes, probably due to the confounding effect of undesirable fermentation by entrobacteria or yeast.

Keywords : Nutritive value; P. maximum; preservation; tropical grass.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License