SciELO - Scientific Electronic Library Online

 
vol.62 número1A preliminary assessment of the presence and distribution of invasive and potentially invasive alien plant species in Laikipia County, Kenya, a biodiversity hotspotAssessing water conditions for Heleophryne rosei tadpoles and the conservation relevance índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Koedoe

versión On-line ISSN 2071-0771
versión impresa ISSN 0075-6458

Resumen

URBAN, Marcel et al. Woody cover mapping in the savanna ecosystem of the Kruger National Park using Sentinel-1 C-Band time series data. Koedoe [online]. 2020, vol.62, n.1, pp.1-6. ISSN 2071-0771.  http://dx.doi.org/10.4102/koedoe.v62i1.1621.

The savanna ecosystems in South Africa, which are predominantly characterised by woody vegetation (e.g. shrubs and trees) and grasslands with annual phenological cycles, are shaped by ecosystem processes such as droughts, fires and herbivory interacting with management actions. Therefore, monitoring of the intra- and inter-annual vegetation structure dynamics is one of the essential components for the management of complex savanna ecosystems such as the Kruger National Park (KNP). To map the woody cover in the KNP, data from European Space Agency's (ESA) Copernicus Sentinel-1 radar satellite (C-Band vertical-vertical [VV]/vertical-horizontal [VH]) for the years 2016 and 2017, at 10 m spatial resolution and repeated acquisitions every 12 days, were utilised. A high-resolution light detection and ranging (LiDAR) data set was reclassified to produce woody cover percentages and consequently used for calibration and validation. Woody cover estimation for different spatial resolutions was carried out by fitting a random forest (RF) model. Model accuracy was assessed via spatial cross-validation and revealed an overall root mean squared error (RMSE) of 22.8% for the product with a spatial resolution of 10 m and improved with spatial averaging to 15.8% for 30 m, 14.8% for 50 m and 13.4% for 100 m. In addition, the product was validated against a second LiDAR data set, confirming the results of the spatial cross-validation of the model. The methodology of this study is designed for savanna vegetation structure mapping based on height estimates by using open-source software and open-access data, to allow for a continuation of woody cover classification and change monitoring in these types of ecosystems. CONSERVATION IMPLICATIONS: Information about the state and changes in woody cover are important for park management and conservation efforts. Both increasing (e.g. because of atmospheric carbon fertilisation) and decreasing (e.g. because of elephant impact) woody cover patterns will have cascading effects on other ecosystem processes such as fire and herbivory.

Palabras clave : woody cover; earth observation; LiDAR; radar; machine learning.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons