SciELO - Scientific Electronic Library Online

 
vol.57 issue1The vegetation and floristics of the Letaba exclosures, Kruger National Park, South AfricaEvaluation of Themeda triandra as an indicator for monitoring the effects of grazing and fire in the Bontebok National Park author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Koedoe

On-line version ISSN 2071-0771
Print version ISSN 0075-6458

Abstract

ELLENDER, Bruce R.  and  WEYL, Olaf L.F.. Resilience of imperilled headwater stream fish to an unpredictable high-magnitude flood. Koedoe [online]. 2015, vol.57, n.1, pp.1-8. ISSN 2071-0771.  http://dx.doi.org/10.4102/KOEDOE.V57I1.1258.

Headwater stream fish communities are increasingly becoming isolated in headwater refugia that are often cut off from other metapopulations within a river network as a result of non-native fish invasions, pollution, water abstraction and habitat degradation downstream. This range restriction and isolation therefore makes them vulnerable to extinction. Understanding threats to isolated fish populations is consequently important for their conservation. Following a base-flow survey, a high-magnitude flood (peak flow of 1245 m3s1) provided an opportunity to investigate the response of endangered Eastern Cape redfin Pseudobarbus afer populations to a natural disturbance in the Waterkloof and Fernkloof streams, two relatively pristine headwater tributaries of the Swartkops River system within the Groendal Wilderness Area, Eastern Cape Province, South Africa. Pseudobarbus afer had limited distributions, occupying 3 km in both the Fernkloof and Waterkloof streams. Fish population assessments before and after the flood event indicated that there were no longitudinal trends in P. afer abundance before or after the flood, but overall abundance post-flooding in the Fernkloof stream was higher. There were no noticeable changes in P. afer size structure pre- and post-flood. Pseudobarbus afer showed resilience to a major flooding event most likely related to evolution in river systems characterised by environmental stochasticity. CONSERVATION IMPLICATIONS: This research provides insight into the population level responses of native headwater stream fishes to unpredictable natural disturbance. Of particular relevance is information on their ability to withstand natural disturbances, which provides novel information essential for their conservation and management especially as these fishes are already impacted by multiple anthropogenic stressors.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License