SciELO - Scientific Electronic Library Online

 
vol.118 número7-8In defence of exploratory research: A reply to critics índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


South African Journal of Science

versão On-line ISSN 1996-7489
versão impressa ISSN 0038-2353

Resumo

ADLAM, Amanda L.; CHIMIMBA, Christian T; HUGO RETIEF, D.C.  e  WOODBORNE, Stephan. Modelling water temperature in the lower Olifants River and the implications for climate change. S. Afr. j. sci. [online]. 2022, vol.118, n.7-8, pp.1-6. ISSN 1996-7489.  http://dx.doi.org/10.17159/sajs.2022/12953.

Freshwater systems in southern Africa are under threat of climate change, not only from altered flow regimes as rainfall patterns change, but also from biologically significant increases in water temperature. Statistical models can predict water temperatures from air temperatures, and air temperatures may rise by up to 7 °C by 2100. Statistical water temperature models require less data input than physical models, which is particularly useful in data deficient regions. We validated a statistical water temperature model in the lower Olifants River, South Africa, and verified its spatial applicability in the upper Klaserie River. Monthly and daily temporal scale calibrations and validations were conducted. The results show that simulated water temperatures in all cases closely mimicked those of the observed data for both temporal resolutions and across sites (NSE>0.75 for the Olifants River and NSE>0.8 for the Klaserie). Overall, the model performed better at a monthly than a daily scale, while generally underestimating from the observed (indicated by negative percentage bias values). The statistical models can be used to predict water temperature variance using air temperature and this use can have implications for future climate projections and the effects climate change will have on aquatic species. SIGNIFICANCE: • Statistical modelling can be used to simulate water temperature variance from observed air temperature, which has implications for future projections and climate change scenarios. • While there are many other factors affecting water temperature, air temperature accounts for up to 95% of water temperature variance. • The model used can successfully simulate water temperature variance for different rivers.

Palavras-chave : climate change; freshwater rivers; statistical models; water temperature; modelling.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons