SciELO - Scientific Electronic Library Online

vol.116 número7-8Occurrence of pharmaceuticals in aquatic environments: A review and potential impacts in South AfricaCharacterisation of wet and dry summer seasons and their spatial modes of variability over Zimbabwe índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados



Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google


South African Journal of Science

versión On-line ISSN 1996-7489
versión impresa ISSN 0038-2353


GANGAT, Ridhwannah; VAN DEVENTER, Heidi; NAIDOO, Laven  y  ADAM, Elhadi. Estimating soil moisture using Sentinel-1 and Sentinel-2 sensors for dryland and palustrine wetland areas. S. Afr. j. sci. [online]. 2020, vol.116, n.7-8, pp.1-9. ISSN 1996-7489.

Soil moisture content (SMC) plays an important role in the hydrological functioning of wetlands. Remote sensing shows potential for the quantification and monitoring of the SMC of palustrine wetlands; however, this technique remains to be assessed across a wetland-terrestrial gradient in South Africa. The ability of the Sentinel Synthetic Aperture Radar (SAR) and optical sensors, which are freely available from the European Space Agency, were evaluated to predict SMC for a palustrine wetland and surrounding terrestrial areas in the grassland biome of South Africa. The percentage of volumetric water content (%VWC) was measured across the wetland and terrestrial areas of the Colbyn Wetland Nature Reserve, located in the City of Tshwane Metropolitan Municipality of the Gauteng Province, using a handheld SMT-100 soil moisture meter at a depth of 5 cm during the peak and end of the hydroperiod in 2018. The %VWC was regressed against the Sentinel imagery, using random forest, simple linear and support vector machine regression models. Random forest yielded the highest prediction accuracies in comparison to the other models. The results indicate that the Sentinel images have the potential to be used to predict SMC with a high coefficient of determination (Sentinel-1 SAR = R2>0.9; Sentinel-2 optical = R2>£.9) and a relatively low root mean square error (Sentinel-1 RMSE =<17%; Sentinel-2 optical = RMSE <21%). Predicted maps show higher ranges of SMC for wetlands (> 50%VWC; p<0.05) compared to terrestrial areas, and therefore SMC monitoring may benefit the inventorying of wetlands, as well as monitoring of their extent and ecological condition. Significance: •The freely available and space-borne Sentinel sensors show potential for the quantification of surface soil moisture across a wetland-terrestrial gradient. •Significant differences between the surface soil moisture of palustrine wetlands and terrestrial areas, imply that inventorying and monitoring of the extent and hydroperiod of palustrine wetlands can potentially be done

Palabras clave : soil moisture content; volumetric water content; hydroperiod; random forest regression; machine learning regression models.

        · texto en Inglés     · Inglés ( pdf )


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons