SciELO - Scientific Electronic Library Online

 
vol.110 issue9-10Bacterial profiling of casing materials for white button mushrooms (Agaricus bisporus) using denaturing gradient gel electrophoresisCobalt(II) removal from synthetic wastewater by adsorption on South African coal fly ash author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


South African Journal of Science

On-line version ISSN 1996-7489
Print version ISSN 0038-2353

Abstract

MAVENGAHAMA, Sydney; DE CLERCQ, Willem P  and  MCLACHLAN, Milla. Trace element composition of two wild vegetables in response to soil-applied micronutrients. S. Afr. j. sci. [online]. 2014, vol.110, n.9-10, pp.01-05. ISSN 1996-7489.  http://dx.doi.org/10.1590/sajs.2014/20130339.

Wild vegetables are an important commodity in the subsistence farming sector. They are considered to be rich in micronutrients and can therefore be used to overcome inadequate nutrition. However, research on micronutrients in wild vegetables remains limited and sporadic. In this study, we evaluated the responses of two wild vegetables - Corchorus olitorius and Amaranthus cruentus var. Arusha - to micronutrients added to the soil in comparison with a reference crop, Swiss chard (Beta vulgaris var. cicla). Swiss chard concentrated significantly (o<0.01) higher amounts of Cu, Zn and Mn in the leaves than did the wild vegetables. Variations in micronutrients among the vegetables were greater for Zn (72-363 mg/kg) and Mn (97.9-285.9 mg/kg) than for Cu (8.8-14 mg/kg). C. olitorius had the least capacity to concentrate Mn and Zn in the leaves. However, C. olitorius concentrated significantly more Fe (327 mg/kg) in the leaves than did A. cruentus (223 mg/kg) or B. vulgaris (295 mg/kg). The mean per cent S concentration in the leaves ranged from 0.26% in C. olitorius to 0.34% in A. cruentus and B. vulgaris. We conclude that the different vegetables had different abilities to concentrate Cu and Zn in the order B. vulgaris > A. cruentus > C. olitorius. These results seem to contradict the belief that wild vegetables have an inherent ability to concentrate mineral micronutrients in their tissues.

Keywords : wild vegetables; soil; fertiliser; micronutrient concentration; fortification.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License