SciELO - Scientific Electronic Library Online

 
vol.110 número3-4Assessment of atmospheric trace metals in the western Bushveld Igneous Complex, South AfricaAn evaluation for harnessing low-enthalpy geothermal energy in the Limpopo Province, South Africa índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


South African Journal of Science

versión On-line ISSN 1996-7489

Resumen

DUBE, Ernest; CHIDUZA, Cornelius  y  MUCHAONYERWA, Pardon. High biomass yielding winter cover crops can improve phosphorus availability in soil. S. Afr. j. sci. [online]. 2014, vol.110, n.3-4, pp. 01-04. ISSN 1996-7489.

We investigated the effects of high biomass yielding winter cover crops, namely grazing vetch [Vicia dasycarpa L.) and oats [Avena sativa L.), on soil phosphorus (P) availability in low fertiliser input maize-based conservation agriculture systems. Soil samples were collected from the 0-50-mm depth of experimental plots after 4 years of maize-winter cover crop rotations. A sequential fractionation scheme was used to separate total soil P into labile, moderately labile and non-labile organic P (Po) and inorganic (Pi) pools. Labile P pools included microbial biomass-P as well as Pi and Po pools extracted using 0.5 M NaHCO3 and 1.0 M HCl. The non-labile P pools were humic-P and 1.0 M H2SO4 extracted P Soil on the maize-winter cover crop rotations had higher HCl-Pi and total P than the soil on the maize-fallow rotation. The cover crops had no significant (p>0.05) effect on NaHCO3-Po, NaHCO3-Pi, HCl-Po, fulvic acid-P and recalcitrant H2SO4-P fractions. Non-application of fertiliser increased accumulation of humic-P on the maize-oats rotation. Cover crop biomass input explained 73% of the variations in microbial biomass-P and 33% of variations in total labile P. Phosphorus concentration of young maize plants was significantly increased by the cover crops, with a positive correlation to HCl-Pi (rs=0.90). This contribution from winter cover crops to P availability in the surface soil suggests that, in the long term, fertiliser P could be reduced in such systems.

Palabras clave : conservation agriculture; cover crop biomass; no-till; phosphorus fertiliser; soil organic matter.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License