SciELO - Scientific Electronic Library Online

vol.109 número5-6Effect of selenium on cadmium-induced oxidative stress and esterase activity in rat organsHypercarnivory, durophagy or generalised carnivory in the Mio-Pliocene hyaenids of South Africa? índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados



Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google


South African Journal of Science

versión On-line ISSN 1996-7489
versión impresa ISSN 0038-2353


VAN DER HOFF, Quay; GREEFF, Johanna C.  y  KLOPPERS, P Hendrik. Numerical investigation into the existence of limit cycles in two-dimensional predator-prey systems. S. Afr. j. sci. [online]. 2013, vol.109, n.5-6, pp.01-06. ISSN 1996-7489.

There has been a surge of interest in developing and analysing models of interacting species in ecosystems, with specific interest in investigating the existence of limit cycles in systems describing the dynamics of these species. The original Lotka-Volterra model does not possess any limit cycles. In recent years this model has been modified to take disturbances into consideration and allow populations to return to their original numbers. By introducing logistic growth and a Holling Type II functional response to the traditional Lotka-Volterra-type models, it has been proven analytically that a unique, stable limit cycle exists. These proofs make use of Dulac functions, Liénard equations and invariant regions, relying on theory developed by Poincaré, Poincaré-Bendixson, Dulac and Liénard, and are generally perceived as difficult. Computer algebra systems are ideally suited to apply numerical methods to confirm or refute the analytical findings with respect to the existence of limit cycles in non-linear systems. In this paper a class of predator-prey models of a Gause type is used as the vehicle to illustrate the use of a simple, yet novel numerical algorithm. This algorithm confirms graphically the existence of at least one limit cycle that has analytically been proven to exist. Furthermore, adapted versions of the proposed algorithm may be applied to dynamic systems where it is difficult, if not impossible, to prove analytically the existence of limit cycles.

Palabras clave : Lotka-Volterra models; predator-prey systems; stable limit cycle; Poincaré mapping; numerical method.

        · texto en Inglés     · Inglés ( pdf )


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons