SciELO - Scientific Electronic Library Online

 
vol.105 número9-10Experimental response of an optical sensor used to determine the moment of blast by sensing the flash of the explosionFemtosecond pump probe spectroscopy for the study of energy transfer of light-harvesting complexes from extractions of spinach leaves índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


South African Journal of Science

versão On-line ISSN 1996-7489

Resumo

PEREA, A.J.; MERONO, J.E.  e  AGUILERA, M.J.. Application of Numenta® Hierarchical Temporal Memory for land-use classification. S. Afr. j. sci. [online]. 2009, vol.105, n.9-10, pp. 370-375. ISSN 1996-7489.

The aim of this paper is to present the application of memory-prediction theory, implemented in the form of a Hierarchical Temporal Memory (HTM), for land-use classification. Numenta®HTM is a new computing technology that replicates the structure and function of the human neocortex. In this study, a photogram, received by a photogrammetric UltraCamD® sensor of Vexcel, and data on 1 513 plots in Manzanilla (Huelva, Spain) were used to validate the classification, achieving an overall classification accuracy of 90.4%. The HTM approach appears to hold promise for land-use classification.

Palavras-chave : memory-prediction theory; NuPIC®; UltraCamD® sensor; Hierarchical Temporal Memory.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License