SciELO - Scientific Electronic Library Online

vol.115 número11The economics of exhaustible mineral resources - concepts and techniques in optimization revisitedClassification of roof strata and calculation of powered support loads in shallow coal seams of China índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados



Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google


Journal of the Southern African Institute of Mining and Metallurgy

versão On-line ISSN 2411-9717
versão impressa ISSN 0038-223X


JOOSTE, Y.  e  MALAN, D.F.. Rock engineering aspects of a modified mining sequence in a dip pillar layout at a deep gold mine. J. S. Afr. Inst. Min. Metall. [online]. 2015, vol.115, n.11, pp.1097-1112. ISSN 2411-9717.

Scattered mining was practised on Kusasalethu Mine (previously Elandsrand Gold Mine) prior to 1998, but at deeper mining levels it was no longer feasible, since it would have resulted in unacceptably high stress levels and energy release rates. Longwall mining was not adopted at these depths as the mine required a more flexible mining method owing to the highly variable grade and the presence of geological structures. A mining method was developed that consisted of dip stabilizing pillars for regional support, as well as bracket pillars to clamp geological structures. A strict sequence of extraction was followed and this, together with the particular layout, was called the 'sequential grid mining method'. This method addressed two key problems, namely negotiating adverse geology and the erratic grade of the Ventersdorp Contact Reef (VCR) orebody. However, a significant drop in production rates resulted in the need for alternatives and improvements to the original mine design. Modifications to the design were proposed in order to increase production rates, and an investigation to consider the rock engineering implications of these modifications was conducted. The study indicated that the modified method, called the 'multi-raise mining method', appears to be feasible and might address some of the production problems that were experienced with the original sequential grid design. An analysis of actual seismic data showed no significant differences between the original sequential grid mining and the implemented multi-raise mining. The numerical modelling of the mining layouts showed slightly higher interim energy release rates (ERRs) and average pillar stress (APS) levels during the extraction process. The final values are nevertheless identical to that of the original sequence. The study also investigated the use of a modelled moment method to analyse future seismic trends. The study illustrated that the expected seismic trends will be very similar for the multi-raise method compared to the original sequential grid mining method. This study is nevertheless considered of a preliminary nature and ongoing monitoring and analysis of seismic data at the mine is required to verify the response of the rock mass to the modified sequence and increased extraction rate. In particular, future work needs to investigate the effect of mining rate (advance rates in individual panels as well as volume of mining in particular raise lines) on the level of seismicity.

Palavras-chave : Deep mine layout; sequential grid mining; sequence of extraction; mining rate.

        · texto em Inglês     · Inglês ( pdf )


Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons