SciELO - Scientific Electronic Library Online

vol.115 número5Unplanned dilution and ore loss prediction in longhole stoping mines via multiple regression and artificial neural network analyses índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados



Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google


Journal of the Southern African Institute of Mining and Metallurgy

versão On-line ISSN 2411-9717
versão impressa ISSN 0038-223X


ZHANG, H.L.; ZHOU, C.Q.; BING, W.U  e  CHEN, Y.M.. Numerical simulation of multiphase flow in a Vanyukov furnace. J. S. Afr. Inst. Min. Metall. [online]. 2015, vol.115, n.5, pp.457-463. ISSN 2411-9717.

Multiphase flow in the widely used Vanyukov furnace was numerically studied. An unsteady three-dimensional and three-phase flow model was firstly built using the computational fluid dynamics (CFD) software ANSYS FLUENT®, and then solved with the volume of fluid (VOF) and k - ε model. The results showed that the proposed model could be used to predict the multiphase movement, the slag/air fluctuation, the vortex formation, and effects of structural and operational parameters. By fast Fourier transform (FFT), the dominant frequency of density with time signal was calculated as 0.29 Hz. The analysis of different injection flow rates of enriched air indicated that this variable has a major effect on the mean slag velocity. The peak mean velocity increased from 2.17 to 4.99 m/s while the flow rate of enriched air varied from 70 to 160 m/s. The proposed model provides a method to optimize the furnace structure and operating conditions for the best furnace performance and lowest energy consumption.

Palavras-chave : Vanyukov furnace; multiphase flow; numerical simulation; fast Fourier transform; structure optimization; operation condition optimization.

        · texto em Inglês     · Inglês ( pdf )


Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons