SciELO - Scientific Electronic Library Online

 
vol.115 número1Dealing with high-grade data in resource estimationRegression revisited (again) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Journal of the Southern African Institute of Mining and Metallurgy

versão On-line ISSN 2411-9717
versão impressa ISSN 0038-223X

Resumo

OLEA, R.A.; PARDO-IGUZQUIZA, E.  e  DOWD, P.A.. Robust and resistant semivariogram modelling using a generalized bootstrap. J. S. Afr. Inst. Min. Metall. [online]. 2015, vol.115, n.1, pp.37-44. ISSN 2411-9717.

The bootstrap is a computer-intensive resampling method for estimating the uncertainty of complex statistical models. We expand on an application of the bootstrap for inferring semivariogram parameters and their uncertainty. The model fitted to the median of the bootstrap distribution of the experimental semivariogram is proposed as an estimator of the semivariogram. The proposed application is not restricted to normal data and the estimator is resistant to outliers. Improvements are more significant for data-sets with less than 100 observations, which are those for which semivariogram model inference is the most difficult. The application is illustrated by using it to characterize a synthetic random field for which the true semivariogram type and parameters are known.

Palavras-chave : geostatistics; sampling distribution; median; normal score transformation; ordinary least-squares fitting.

        · texto em Inglês     · Inglês ( pdf )