SciELO - Scientific Electronic Library Online

 
vol.115 número1Dealing with high-grade data in resource estimationRegression revisited (again) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Journal of the Southern African Institute of Mining and Metallurgy

versión On-line ISSN 2411-9717
versión impresa ISSN 0038-223X

Resumen

OLEA, R.A.; PARDO-IGUZQUIZA, E.  y  DOWD, P.A.. Robust and resistant semivariogram modelling using a generalized bootstrap. J. S. Afr. Inst. Min. Metall. [online]. 2015, vol.115, n.1, pp.37-44. ISSN 2411-9717.

The bootstrap is a computer-intensive resampling method for estimating the uncertainty of complex statistical models. We expand on an application of the bootstrap for inferring semivariogram parameters and their uncertainty. The model fitted to the median of the bootstrap distribution of the experimental semivariogram is proposed as an estimator of the semivariogram. The proposed application is not restricted to normal data and the estimator is resistant to outliers. Improvements are more significant for data-sets with less than 100 observations, which are those for which semivariogram model inference is the most difficult. The application is illustrated by using it to characterize a synthetic random field for which the true semivariogram type and parameters are known.

Palabras clave : geostatistics; sampling distribution; median; normal score transformation; ordinary least-squares fitting.

        · texto en Inglés     · Inglés ( pdf )