SciELO - Scientific Electronic Library Online

vol.114 issue12Mine disaster and mine rescue training courses in modern academic mining engineering programmesModelling and determining the technical efficiency of a surface coal mine supply chain author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Journal of the Southern African Institute of Mining and Metallurgy

On-line version ISSN 2411-9717
Print version ISSN 0038-223X


BIRCH, C.. New systems for geological modelling - black box or best practice?. J. S. Afr. Inst. Min. Metall. [online]. 2014, vol.114, n.12, pp.993-1000. ISSN 2411-9717.

A 'geologically constrained' orebody model has long been hailed as vital for a Mineral Resource statement that is compliant with the South African Code for Reporting of Exploration Results, Mineral Resources and Mineral Reserves (SAMREC Code). In this paper, the requirements for geological modelling as contained in the outline for the SAMREC Code are considered, and whether the new modelling software available on the market is a 'black box' or is better for modelling than traditional methods of wireframe creation. Implicit geological modelling is a technique that uses a radial basis function to establish and update geological models relatively quickly and efficiently from borehole data, outcrop data, manually interpreted vertical or horizontal sections, and structural data. Assays and any coded drill-hole data, such as lithology and alteration, can be interpolated. Leapfrog Geo software is an example of this new approach to geological modelling. A case study of a short training course in geological modelling for non-geologists at the University of Witwatersrand, as part of the Higher Certificate in Mineral Resource Management, is presented. The benefits of this type of geological modelling software are considered for this type of assignment as well as for mining industry applications. The use of geological models in mine planning is reviewed and a case study is presented comparing the variations in mine plan design and financial output of 13 final-year Mine Design projects from the University of the Witwatersrand School of Mining Engineering. These designs were all based on the same geological model created in the traditional way, and yet the resultant mine designs were significantly different, with very different resulting financial outlooks for the project. This raises questions as to how significant a very detailed model in the pre-feasibility and feasibility phases of projects really is, considering the huge costs involved in gathering the required data to build a SAMREC-compliant geological model.

Keywords : implicit geological modelling; mine design; software.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License