SciELO - Scientific Electronic Library Online

 
vol.114 issue10Testing tendon support units under a combination loading scenarioOutsourcing in the mining industry: decision-making framework and critical success factors author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Journal of the Southern African Institute of Mining and Metallurgy

On-line version ISSN 2411-9717

Abstract

WETTAINEN, T.  and  MARTINSSON, J.. Estimation of future ground vibration levels in Malmberget town due to mining-induced seismic activity. J. S. Afr. Inst. Min. Metall. [online]. 2014, vol.114, n.10, pp. 835-843. ISSN 2411-9717.

Malmberget town is located in northern Sweden, approximately 70 km north of the Arctic Circle. Parts of the town overlie more than 20 iron orebodies, consisting mainly of magnetite with smaller quantities of haematite. The mine is operated by the mining company LKAB. Mining started in the 17th century, but not until the railway to the coastal city of Luleå was completed in 1888 did large-scale production commence. Around 1920, mining proceeded underground and today sublevel caving is the only mining method used. Sublevel caving causes subsidence of the ground surface, and buildings and residential areas have been relocated due to the mining activities for more than 50 years. The number of seismic events accompanied by strong ground vibrations is now increasing. In 2008 the mine received a permit from the Environmental Court of Sweden to increase production to 20 Mt of crude ore per year. A prerequisite for the permit was that the mine conducts a number of investigations regarding the environmental impact on the residents of Malmberget. One of these investigations concerned how seismicity will change as production increases and what measures could be taken to reduce inconvenience to the town residents. Today the mine possesses an extensive seismic monitoring system with more than 180 underground and surface geophones. For this study, eleven seismically active volumes in Malmberget mine were identified, and for each of them, a yearly future maximum magnitude interval was estimated based on the current production plan. Relationships between historical seismic events and measured ground vibrations in the town of Malmberget were established, and future ground vibrations caused by expected seismic events were estimated using a probabilistic approach. The outcome was the number of intervals of expected ground vibration per year and per monitoring point. Possible measures to reduce inconvenience for the town residents include blast restrictions, sequencing, and possibly preconditioning. The ultimate long-term solution is an almost complete relocation of Malmberget town. This process has recently been formalized and LKAB is taking an active part in realizing this goal.

Keywords : sublevel caving; mining-induced seismicity; surface vibrations; future estimations; environmental impact.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License