SciELO - Scientific Electronic Library Online

vol.113 issue3A practical approach to plant-scale flotation optimizationHybrid Energy FlotationTM - on the optimization of fine and coarse particle kinetics in a single ro author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Journal of the Southern African Institute of Mining and Metallurgy

On-line version ISSN 2411-9717
Print version ISSN 0038-223X


ALMOND, D.G; BECERRA, K  and  CAMPAIN, D. The minerals plant of the future - leveraging automation and using intelligent collaborative environment. J. S. Afr. Inst. Min. Metall. [online]. 2013, vol.113, n.3, pp.00-00. ISSN 2411-9717.

Low-grade, complex mineral deposits have resulted in the need for complicated large-throughput processing plants delivering increased productivity, reliability, and utilization, together with reducing operational costs. Complex mineralogy has resulted in complicated process flow sheets designed to recover minerals as efficiently as possible. In addition, the remote location of many minerals-processing plants, continuously rising energy costs, and fierce competition pose significant challenges to the modern mine, compounded by a global scarcity of qualified and experienced operational personnel. Over the last decade the Internet and automation technologies have undergone major advancements. Automation technologies, solutions, and concepts that existed, but were considered risky or unreliable prior to the year 2000, have now gained acceptance and matured. Furthermore, new technologies and different collaboration schemes have appeared, offering innovative solutions to the mining industry to address many of the challenges described. These advancements in reliable remote systems that access technology through the Internet provide significant opportunity to support mining operations, enhance process performance, provide engineering services, and proactively anticipate and execute maintenance services. This paper references a global survey of automation trends in the mining industry and the potential for an intelligent collaborative environment using automation technologies to exploit opportunities in operating the plant of the future, increasing effectiveness, and reducing operational costs. A variety of possibilities are described, including asset management solutions, remote access capabilities, performance monitoring solutions, advanced process control technologies, and the formation of an intelligent collaborative environment. A real example where this technology is used to support the operation and maintenance at a cement plant in Egypt is given to underpin the concepts described in this paper.

Keywords : plant automation; process control; remote access; intelligent collaborative environment.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License