SciELO - Scientific Electronic Library Online

 
vol.112 número2Economics of mine water treatment índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Journal of the Southern African Institute of Mining and Metallurgy

versión On-line ISSN 2411-9717
versión impresa ISSN 0038-223X

Resumen

WANG, F.; TU, S.  y  BAI, Q.. Practice and prospects of fully mechanized mining technology for thin coal seams in China. J. S. Afr. Inst. Min. Metall. [online]. 2012, vol.112, n.2, pp.161-170. ISSN 2411-9717.

In China, thin coal seams are rich in resources but are technically challenging. The mineable reserves in these seams account for 20.4% of the total coal resources, while the current production accounts for only 10.4% of the total annual production. Characteristics such as narrow mining space, low level of mechanization, poor working environment, and high cost of mining, restrict the development of mining safety and efficiency. Recently, fully mechanized mining technology has developed rapidly for thin coal seams, the level of yield and efficiency has reached or exceeded the international standard, and some state-owned key coal mines are considering automation of their mining process. In thin coal seams with hard stone bands that contain concentrations of pyrite, a specialized software, LS-DYNA, is used to calculate the rational blasting parameters that are used in the deep-hole pre-splitting blasting. Using this method the hard stone bands are fractured effectively, and hence increasing the coal productivity. In addition, mining advance rate were increased by enhancing the level of fully mechanized equipment and safety improved by increasing gas drainage from the gas outburst prone seam located some 7 m below the coal horizon. At present, thin coal seam mining technology faces many challenges, including the low level of equipment automation, the low advance rate in mixed coal-rock ground, and the large number of the mine personnel underground. By lowering the labour intensity and improving efficiency through automation and other measures, more efficient working faces can be implemented in thin coal seams.

Palabras clave : thin coal seam; fully mechanized mining; complex geological conditions; deep-hole pre-splitting blasting; manless working face.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons