SciELO - Scientific Electronic Library Online

 
vol.110 número8Efficiency analysis of armed-chained cutting machines in block production in travertine quarries índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Journal of the Southern African Institute of Mining and Metallurgy

versão On-line ISSN 2411-9717
versão impressa ISSN 0038-223X

Resumo

KAMALI, M.  e  ATAEI, M.. Prediction of blast induced ground vibrations in Karoun III power plant and dam: A neural network. J. S. Afr. Inst. Min. Metall. [online]. 2010, vol.110, n.8, pp.481-490. ISSN 2411-9717.

In this research, in order to predict the peak particle velocity (PPV) (as vibration indicator) caused by blasting projects in the excavations of the Karoun III power plant and dam, three techniques including statistical, empirical, and neural network were used and their results were interpreted and compared. First, multivariate regression analysis (MVRA) was used as statistical approach. Next, PPV was predicted using some widely used empirical models. Lastly, an artificial neural network was used. In the ANN model, maximum charge per delay, total charge per round, distance from blast site, direction of firing, blasthole length, number of blastholes, total delay in milliseconds, number of delay intervals, and average specific charge were taken into consideration as input parameters and consequently the PPV as output parameter. The results of the techniques were interpreted from two points of view. Firstly, the correlation between the observed data and predicted ones, secondly the total error between observed data and predicted ones. The MVRA had a satisfactory correlation but its error of estimation was comparatively very high. The empirical model had reliable correlation and a small error of estimation; in total the results of empirical method were more reliable than those of MVRA. Generally, the ANN approach showed very high correlation and a very small error. The results of this research indicated that the ANN model is the best predicting model for PPV in comparison with other approaches.

Palavras-chave : Neural network; blasting; peak particle velocity; ground vibration; vibrations monitoring and excavation.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons