SciELO - Scientific Electronic Library Online

vol.110 número5The preparation of plans and diagrams at South African mines. Where is the boundary between the roles of mine and land surveyors?CFD simulation and experimental measurement of nickel solids concentration distribution in a stirred tank índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados



Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google


Journal of the Southern African Institute of Mining and Metallurgy

versão On-line ISSN 2411-9717
versão impressa ISSN 0038-223X


KARIMI, M.; DEHGHANI, A.; NEZAMALHOSSEINI, A.  e  TALEBI, Sh.. Prediction of hydrocyclone performance using artificial neural networks. J. S. Afr. Inst. Min. Metall. [online]. 2010, vol.110, n.5, pp.207-212. ISSN 2411-9717.

Artificial neural networks (ANNs) have found their applications in the modelling of unit operations of mineral processing plants. In this research, laboratory-scale tests were conducted, using a three-inch diameter Mozley hydrocyclone. Main parameters included pressure drop at inlet, solid per cent, vortex and apex diameter were adjusted. The corrected cut size (d50c) and the flow rates of underflow and overflow were determined. Multi layers perceptron (MLP) feed forward network architectures were designed to predict the responses. The results showed a good correlation between experimental and network output, for corrected cut size and flow rates.

Palavras-chave : hydrocyclone; artificial neural network; corrected cut size; flow rates.

        · texto em Inglês     · Inglês ( pdf )


Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons