SciELO - Scientific Electronic Library Online

 
vol.110 número5The preparation of plans and diagrams at South African mines. Where is the boundary between the roles of mine and land surveyors?CFD simulation and experimental measurement of nickel solids concentration distribution in a stirred tank índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Journal of the Southern African Institute of Mining and Metallurgy

versión On-line ISSN 2411-9717

Resumen

KARIMI, M.; DEHGHANI, A.; NEZAMALHOSSEINI, A.  y  TALEBI, Sh.. Prediction of hydrocyclone performance using artificial neural networks. J. S. Afr. Inst. Min. Metall. [online]. 2010, vol.110, n.5, pp. 207-212. ISSN 2411-9717.

Artificial neural networks (ANNs) have found their applications in the modelling of unit operations of mineral processing plants. In this research, laboratory-scale tests were conducted, using a three-inch diameter Mozley hydrocyclone. Main parameters included pressure drop at inlet, solid per cent, vortex and apex diameter were adjusted. The corrected cut size (d50c) and the flow rates of underflow and overflow were determined. Multi layers perceptron (MLP) feed forward network architectures were designed to predict the responses. The results showed a good correlation between experimental and network output, for corrected cut size and flow rates.

Palabras clave : hydrocyclone; artificial neural network; corrected cut size; flow rates.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License