SciELO - Scientific Electronic Library Online

 
vol.109 número7Optimization of shovel-truck system for surface mining índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Journal of the Southern African Institute of Mining and Metallurgy

versão On-line ISSN 2411-9717

Resumo

ESTRADA-RUIZ, R.H.  e  PEREZ-GARIBAY, R.. Neural networks to estimate bubble diameter and bubble size distribution of flotation froth surfaces. J. S. Afr. Inst. Min. Metall. [online]. 2009, vol.109, n.7, pp. 441-446. ISSN 2411-9717.

This work analyses a new approach to estimates bubble size distribution of froth surfaces using artificial neural networks (ANN). Also, the robustness of ANN to interpret images with illumination perturbations, produced by light problems or dirt attached to the window of the video camera is evaluated. The experimental work was carried out in a laboratory flotation column, instrumented with an image acquisition system. The images were processed making use of a perceptron model with a hidden layer, sigmoidal transfer function and unitary bias, and the ANN trained with a back propagation algorithm. The results of validation show that ANN are reliable for learning and producing generalized predictions of the froth mean bubble diameter and bubble size distribution, when the model is trained using a database that contains information on the illumination intensity.

Palavras-chave : image analysis; neural networks; bubble diameter; bubble size distribution.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License