SciELO - Scientific Electronic Library Online

 
vol.76A Novel Biopolymer-based Nanomagnetic Catalyst for the Synthesis of 4H-pyran and Tetrahydro-4H-chromene DerivativesSurface-modified Water Hyacinth (Eichhornia crassipes) over Activated Carbon for Wastewater Treatment: A Comparative Account índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

    Links relacionados

    • Em processo de indexaçãoCitado por Google
    • Em processo de indexaçãoSimilares em Google

    Compartilhar


    South African Journal of Chemistry

    versão On-line ISSN 1996-840Xversão impressa ISSN 0379-4350

    Resumo

    TOLULOPE, Dauda K.; JACKSON, Graham E; CAIRA, Mino R  e  HAMMOUDA, Ahmed N. Potentiometrie and spectroscopic study of isoniazid - an anti-tubercular drug. S.Afr.j.chem. (Online) [online]. 2022, vol.76, pp.65-71. ISSN 1996-840X.  https://doi.org/10.17159/0379-4350/2022/v76a10.

    The copper, nickel and zinc complexes of isoniazid (ISO, isonicotinic acid hydrazide), an anti-tubercular drug, have been investigated to determine whether these metal-ions improve the permeability and bioavailability of the drug. Since such properties of isonazid depend on its solution speciation, the latter was investigated by determining the equilibrium constants for the reaction of H+, Cu(II), Ni(II) and Zn(II) with isonazid in aqueous solution at 25.00 ± 0.01 °C and 0.15 M (NaCl), using glass electrode potentiometry. The structure of the copper complex of isoniazid was investigated using ultraviolet-visible spectroscopy. The results support the structures postulated from the potentiometric data. This study also considered membrane permeability using a Franz cell and octanol/water distribution coefficients. Distribution coefficient studies showed that ISO and its metal complexes are hydrophilic. The incorporation of a metal-ion improves the hydrophilicity of the ligand. The presence of a metal ion greatly enhanced the permeation of ISO through an artificial membrane in the order Cu(II) > Ni(II) > Zn(II) > ISO at pH 2 and Zn(II) > Ni(II) > ISO > Cu(II) at pH 4.

    Palavras-chave : permeability; potentiometric; speciation; spectroscopy; tuberculosis.

            · texto em Inglês     · Inglês ( pdf )