SciELO - Scientific Electronic Library Online

 
vol.32 número2Defeasibility applied to Forrester's paradoxExchanging image processing and OCR components in a Setswana digitisation pipeline índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

    Links relacionados

    • En proceso de indezaciónCitado por Google
    • En proceso de indezaciónSimilares en Google

    Compartir


    South African Computer Journal

    versión On-line ISSN 2313-7835versión impresa ISSN 1015-7999

    Resumen

    HARRISON, Michael  y  MEYER, Thomas. DDLV: A system for rational preferential reasoning for Datalog. SACJ [online]. 2020, vol.32, n.2, pp.184-217. ISSN 2313-7835.  https://doi.org/10.18489/sacj.v32i2.850.

    Datalog is a powerful language that can be used to represent explicit knowledge and compute inferences in knowledge bases. Datalog cannot, however, represent or reason about contradictory rules. This is a limitation as contradictions are often present in domains that contain exceptions. In this paper, we extend Datalog to represent contradictory and defeasible information. We define an approach to efficiently reason about contradictory information in Datalog and show that it satisfies the KLM requirements for a rational consequence relation. We introduce DDLV, a defeasible Datalog reasoning system that implements this approach. Finally, we evaluate the performance of DDLV.CATEGORIES: Computing methodologies ~ Artificial intelligence Theory of computation ~ Logic

    Palabras clave : datalog; non-monotonic reasoning; preferential reasoning; knowledge representation.

            · texto en Inglés     · Inglés ( pdf )