SciELO - Scientific Electronic Library Online

 
vol.34 número3Parametric mandible reconstruction plate índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

    Links relacionados

    • En proceso de indezaciónCitado por Google
    • En proceso de indezaciónSimilares en Google

    Compartir


    South African Journal of Industrial Engineering

    versión On-line ISSN 2224-7890

    Resumen

    NETHAMBA, L.  y  GROBBELAAR, S.. The development of an action priority matrix and technology roadmap for the implementation of data-driven and machine-learning-based predictive maintenance in the South African railway industry. S. Afr. J. Ind. Eng. [online]. 2023, vol.34, n.3, pp.318-335. ISSN 2224-7890.  https://doi.org/10.7166/34-3-2958.

    In improving railways for the future, artificial intelligence and machine learning were identified as top-priority technology systems that enable data-driven methods and predictive maintenance. A local survey using semi-structured interviews showed that the railway industry lags behind in adopting and implementing data-driven and machine-learning methods for predictive maintenance. Insights from international studies were found to be relevant in South Africa. Other implementation barriers were identified in the socio-economic and socio-political areas of South Africa. An action priority matrix and technology roadmap was developed to guide the South African railway industry towards the implementation of data-driven and machine learning-based predictive maintenance. The action priority matrix was developed by using a two-round Delphi technique to rank the prioritisation of the required activities. The research showed the importance of considering insights from both international studies and the local context when adopting and implementing technology systems to improve business objectives.

            · resumen en Africano     · texto en Inglés     · Inglés ( pdf )