SciELO - Scientific Electronic Library Online

 
vol.31 número4Establishing a selection framework for a lean and value engineering hybrid methodologyA World Economic Forum perspective on the quadruple helix model of innovation índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

    Links relacionados

    • En proceso de indezaciónCitado por Google
    • En proceso de indezaciónSimilares en Google

    Compartir


    South African Journal of Industrial Engineering

    versión On-line ISSN 2224-7890

    Resumen

    PANCHAM, A.; WITHEY, D.  y  BRIGHT, G.. Amore: CNN-based moving object detection and removal towards slam in dynamic environments. S. Afr. J. Ind. Eng. [online]. 2020, vol.31, n.4, pp.46-58. ISSN 2224-7890.  https://doi.org/10.7166/31-4-2180.

    Simultaneous Localisation And Mapping (SLAM) In Dynamic Environments (IDE) may be improved by detecting and removing moving objects that may otherwise lead to localisation errors. This work combines convolutional neural networks and feature clustering to serve as A Moving Object detection and REmoval method (AMORE) that removes moving objects from the SLAM process and improves the performance of SLAMIDE. Experiments show that a visual SLAM algorithm and AMORE combined are more robust with high-dynamic objects than the SLAM algorithm alone, and performance is comparable to state-of-the-art visual SLAMIDE approaches. AMORE has the advantage of simplicity, requiring minimal implementation effort.

            · resumen en Africano     · texto en Inglés     · Inglés ( pdf )