SciELO - Scientific Electronic Library Online

 
vol.122 issue8The effect of holding time before solidification on the properties of aluminium castingsAn exploration of women's workplace experiences in the South African mining industry author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

    Related links

    • On index processCited by Google
    • On index processSimilars in Google

    Share


    Journal of the Southern African Institute of Mining and Metallurgy

    On-line version ISSN 2411-9717Print version ISSN 2225-6253

    Abstract

    COETZEE, B.J.  and  SONNENDECKER, PW.. Fully automated coal quality control using digital twin material tracking and statistical model predictive control for yield optimization during production of semi soft coking- and power station coal. J. S. Afr. Inst. Min. Metall. [online]. 2022, vol.122, n.8, pp.429-436. ISSN 2411-9717.  https://doi.org/10.17159/2411-9717/2002/2022.

    The quality control of a two-stage coal washing process involves several complex components that need to be modelled accurately, to enable autonomous control of the process. The first objective is to develop a method to track the material through the washing process, while ensuring accurate washing prediction models are used. This was achieved through a digital twin model of the Grootegeluk 1 coal processing plant. The model is the amalgamation of manipulating and combining of data-sets from the plant historian, geological wash tables, and mining dispatch servers. This information is then used to control and set the processing medium densities of all 15 modules on the plant, 10 modules in the primary wash and 5 modules in the secondary wash. This controller has been successfully implemented and controlled the plant for 10 days.

    Keywords : coal quality; quality control; digital twin.

            · text in English     · English ( pdf )