SciELO - Scientific Electronic Library Online

 
vol.32 issue3Modelling the tendencies of a residential population to conserve waterThe state of the art of gendered energy innovations: a structured literature review author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

    Related links

    • On index processCited by Google
    • On index processSimilars in Google

    Share


    South African Journal of Industrial Engineering

    On-line version ISSN 2224-7890

    Abstract

    TSIMBA, W.; CHIRINDA, G.P.  and  MATOPE, S.. Machine learning for decision-making in the remanufacturing of worn-out gears and bearings. S. Afr. J. Ind. Eng. [online]. 2021, vol.32, n.3, pp.135-150. ISSN 2224-7890.  https://doi.org/10.7166/32-3-2636.

    Roterende meganiese toerusting word daagliks in die meganiese bedryf gebruik. Hierdie toerusting ondergaan slytasie en word gereeld as skroot afgeskryf. Hierdie artikel gebruik masjienleer om slytasie van laers en ratte vas te vang en te ontleed om te bepaal of hulle herbruik kan word. Eindige element analise is toegepas op geslyte reguittand ratte en kussinglaers om kenmerk ontrekking vir beeldverwerkingsalgoritmes te fasiliteer. Hierdie proses vang die werklike ratte, laers en seëls as CAD tekeninge vas en besluit dan op die optimale prosesse om herbruikbare onderdele te herstel. Die meganiese onderdele van die stelsel is ontwerp deur van SOLID WORKS, MATLAB en Proteus sagteware gebruik te maak. 'n Arduino mikro-beheerder is gebruik vir die stelsel toepassingsontwerp. Die resultate van toetse op 'n geslyte rat en laer toon dat die rat 4% nie herbruikbaar is nie en die laer 60.2% nie herbruikbaar is nie. Die rat word dus herwerk en die laer word geskrap.

            · abstract in English     · text in English     · English ( pdf )