SciELO - Scientific Electronic Library Online

 
vol.39 issue4Effect of altitude on erosive characteristics of concurrent rainfall events in the northern KwaZulu-Natal Drakensberg author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

    Related links

    • On index processCited by Google
    • On index processSimilars in Google

    Share


    Water SA

    On-line version ISSN 1816-7950Print version ISSN 0378-4738

    Abstract

    GIBSON, LA; JARMAIN, C; SU, Z  and  ECKARDT, FE. Estimating evapotranspiration using remote sensing and the Surface Energy Balance System - A South African perspective. Water SA [online]. 2013, vol.39, n.4, pp.00-00. ISSN 1816-7950.

    Remote sensing-based evapotranspiration (ET) algorithms developed in recent years are well suited for estimating evapotranspiration and its spatial trends over time. In this paper the application of energy balance methods in South Africa is reviewed, showing that the Surface Energy Balance Algorithm for Land (SEBAL) model is the most widely used, but highlighting the potentials of the Surface Energy Balance System (SEBS) model. The SEBS model is then reviewed in the international literature and lessons learned from South African examples are expanded upon. The SEBS model has been extensively used for teaching and training purposes and has been applied in research projects across many different environments. However, there are discrepancies in the reported accuracy of the SEBS model due to known model sensitivities. It is therefore recommended that any further research using the SEBS model in South Africa should be limited to agricultural areas where accurate vegetation parameters can be obtained, where high resolution imagery with low sensor zenith angles is available, and where canopy cover is complete.

    Keywords : Evapotranspiration; remote sensing SEBS; SEBAL.

            · text in English     · English ( pdf )