SciELO - Scientific Electronic Library Online

 
vol.70Synthesis of nitrogen-doped carbon nanotubes with layered double hydroxides containing iron, cobalt or nickel as catalyst precursorsGrade 12 achievement rating scales in the new National Senior Certificate as indication of preparedness for tertiary chemistry author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

    Related links

    • On index processCited by Google
    • On index processSimilars in Google

    Share


    South African Journal of Chemistry

    On-line version ISSN 1996-840XPrint version ISSN 0379-4350

    Abstract

    ESKEW, Matthew W.  and  SIMOYI, Reuben H.. Lyapunov exponents and the Belousov-Zhabotinsky oscillator: an interactive computational approach. S.Afr.j.chem. (Online) [online]. 2017, vol.70, pp.82-88. ISSN 1996-840X.  https://doi.org/10.17159/0379-4350/2017/v70a11.

    The Belousov-Zhabotinsky (BZ) chemical oscillator is the most studied oscillator. It has been modelled on the basis of single-step mechanisms which have been continuously refined since the seminal manuscript by Field, Koros and Noyes in 1972. This manuscript reports on a unique way of modelling the global dynamics of the oscillator by assuming that the BZ oscillator has shown chaotic behaviour. The unique mathematical definition of chaos is very stringent, and, in this manuscript, we attempt to trace this unique exotic behaviour by the use of 'onto' maps of the interval onto itself which are known to exhaustively show a universal sequence of states that has all the hallmarks of chaotic behaviour. A series of one-humped maps of the interval display, through iterations and subsequent symbolic dynamics, a universal sequence of steps that commence with period-doubling, culminating in chaotic behaviour at some accumulation point of an appropriate bifurcation parameter. We put this theory to the test for the BZ oscillator in this manuscript by selecting a unique continuous map of the interval. This was then decomposed by an iterative treatment. Metric entropy and subsequent arbiter of chaotic behaviour was determined by evaluation of Lyapunov exponents which were then compared to observed BZ oscillator states. Our proposed map satisfactorily modelled the global dynamics of the BZ oscillator; predicted period-doubling, and a regime after a critical bifurcation parameter, where chaotic sequences were dense. We also produce, in the Addendum, an iterative MatLab procedure that any reader can utilize to reveal the type of states and behaviour reported here.

    Keywords : BZ Oscillator; chemical chaos; one-dimensional maps; maps of the interval; symbolic dynamics; Lyapunov characteristic exponent.

            · text in English     · English ( pdf )