Scielo RSS <![CDATA[Water SA]]> vol. 47 num. 3 lang. es <![CDATA[SciELO Logo]]> <![CDATA[<b>Integration of complete elemental mass-balanced stoichiometry and aqueous-phase chemistry for bioprocess modelling of liquid and solid waste treatment systems - Part 1: The physico-chemical framework</b>]]> Bioprocesses interact with the aqueous environment in which they take place. Currently integrated bioprocess and three-phase (aqueous-gas-solid) multiple strong and weak acid/base system models are being developed for a range of wastewater treatment applications, including anaerobic digestion, biological sulphate reduction, autotrophic denitrification, biological desulphurization and plant-wide wastewater treatment systems. In order to model, measure and control such integrated systems, a thorough understanding of the interaction between the bioprocesses and aqueous-phase multiple strong and weak acid/bases is required. This first in a series of five papers sets out a conceptual framework and methodology for deriving bioprocess stoichiometric equations. It also introduces the relationship between alkalinity changes in bioprocesses and the underlying reaction stoichiometry, which is a key theme of the series. The second paper develops the stoichiometric equations for the main biological transformations that are important in wastewater treatment. The link between the modelling and measurement frameworks, which uses summary measures such as chemical oxygen demand (COD) and alkalinity, is described in the third and fourth papers. The fifth paper describes an equilibrium aquatic speciation algorithm which can be combined with bioprocess stoichiometry to provide integrated models of wastewater treatment processes. <![CDATA[<b>Integration of complete elemental mass-balanced stoichiometry and aqueous-phase chemistry for bioprocess modelling of liquid and solid waste treatment systems </b><b>−</b><b> Part 2: Bioprocess stoichiometry</b>]]> Bioprocesses interact with the aqueous environment in which they take place. Integrated bioprocess and three-phase (aqueous-gas-solid) multiple strong and weak acid/base system models are currently being developed for a range of wastewater treatment applications including anaerobic digestion, biological sulphate reduction, autotrophic denitrification, biological desulphurization and plant-wide water and resource recovery facilities. In order to model, measure and control such integrated systems, a thorough understanding of the interactions between the bioprocesses and aqueous phase multiple strong and weak acid/bases are required. In the first of this series of five papers, the generalized procedure for deriving bioprocess stoichiometric equations was explained. This second paper presents the stoichiometric equations for the major biological processes and shows how their structure can be analysed to provide insight into how bioprocesses interact with the aqueous environment. Such insight is essential for confident, effective and reliable use of model development protocols and algorithms. It shows that the composite parameters, total oxygen demand (TOD, electron donating capacity) and alkalinity (proton accepting capacity), are conserved in bioprocess stoichiometry and their changes in the aqueous phase can be calculated from the bioprocess components. In the third paper, the measurement of the organics composition is presented. The link between the modelling and measurement frameworks of the aqueous phase, which uses the composite parameter alkalinity, is described in the fourth paper. Aqueous ionic speciation modelling is described in detail in the fifth. <![CDATA[<b>Groundwater resources monitoring during unconventional oil and gas extraction: South African laboratory analytical capabilities</b>]]> Groundwater resource quality monitoring before, during, and after unconventional oil and gas (UOG) extraction would assist in protecting groundwater resources. Limited laboratory analytical capacity may, however, hamper effective monitoring. We assessed South African (SA) laboratory analytical capabilities for specific groundwater monitoring parameters relevant to UOG extraction. We found a limited capacity to analyse for most of the UOG extraction-related groundwater monitoring parameters and that most of the surveyed laboratories are not planning to increase their analyses capacity to cater for UOG extraction. This issue must be addressed urgently if SA wants to proceed with UOG extraction. Policy recommendations include that South Africa should develop a specialised UOG extraction monitoring laboratory to cater for analytical needs. Such capacity could also address the analytical requirements for the rest of the African region during UOG extraction. <![CDATA[<b>Exploring the use of indigenous Western Cape plants as potential water and soil pollutant phytoremediators with a focus on green infrastructure</b>]]> Urban water managers, engineers and conservation ecologists in the Western Cape (WC) Province of South Africa are faced with a major environmental and human health challenge, with urbanisation, industrialisation, population growth and agricultural development placing pressure on the limited water and soil resources. In addressing this resource degradation an effective, affordable and sustainable solution is required. The implementation of 'green infrastructure' (GI), such as phytoremediation, involves the use of plants to hinder pollutant transport and attenuate runoff flow, protecting the health of the human population and the environment. However, care must be taken when selecting plant species due to possible invasive behaviour, affecting ecosystem dynamics. As a result of the need for resource remediation in both urban and rural areas, the use of non-invasive indigenous species is vital to an efficient and sustainable technology, as urban areas are often the initial sites for introduction from which invasions spread. This paper proposes indigenous WC species for potential use in GI, identified from global bioremediation literature, as an aid to the practicing civil engineer and water manager responsible for the design and management of the phytotechnology. These indigenous species offer potential as phytoremediators in local GI, as well as suggest the types of plants that should be investigated further as alternatives to effective exotics. The investigation returned 56 non-invasive WC plant species likely to aid resource remediation without jeopardising the conservation and biodiversity of the administered area. The selected vegetation is potentially capable of increasing heterogeneity and adjusting to the dynamic biogeographic conditions of the recipient habitat. Thus, distinct species capable of remediating a wide range of environmental contaminants for GI, into the diverse habitats of the WC, at a fraction of the cost of conventional techniques, are promoted. <![CDATA[<b>Chemical composition of rain at a regional site on the South African Highveld</b>]]> Relatively limited data have been published on the chemical composition of wet deposition for South Africa, which is considered an important source region for atmospheric pollutants. Concentrations and wet deposition fluxes of ionic species determined in rain samples collected from December 2014 to April 2018 at a regional site, Welgegund, are presented, and contextualised by wet deposition composition in the north-eastern interior of South Africa. 89% of rain samples collected during the sampling period complied with the data quality objectives of the World Meteorological Organisation. The total ionic concentration of rainwater at Welgegund was similar to that at two regional sites located within proximity of industrial activities. The pH of rainwater (4.80) was comparable to that determined at two rural background sites, which indicated increased neutralisation. Similarly to the other sites located in the South African interior, SO4(2-) was the most abundant species in rain, with concentrations thereof in the same order as SO4(2-) levels determined at the two industrially influenced sites. Lower sulphur and nitrogen fluxes at Welgegund were attributed to lower average annual rainfall. The anthropogenic (industrial) source group had the largest contribution to wet deposition chemical composition, which signified the influence of major source regions in the South African interior that impact Welgegund. Relatively large contributions were also calculated from marine and crustal sources. The influence of agricultural activities was also evident, while biomass burning had the lowest contribution due to open biomass burning occurring mainly during the dry season <![CDATA[<b>A new modified spatial approach for monitoring non-perennial river water availability using remote sensing in the Tankwa Karoo, Western Cape, South Africa</b>]]> Non-perennial rivers (N-PRs) make up two thirds of all rivers in South Africa, yet many are ungauged. Traditionally, it has been assumed that when a flow is recorded, there is water throughout that river. These assumptions have led to incorrect estimations of available water resources. This work thus aimed at developing a new spatially explicit framework, for monitoring river water availability in a N-PR system. The Tankwa River in South Africa was used for testing this approach. The length of the river reach with water was determined using the Sentinel-1 and Sentinel-2 data derived indices. Image thresholding was applied to Sentinel-1, and the normalised difference water index (NDWI) to Sentinel-2. Sentinel-2 yielded an overall accuracy (OA) of 85%, whereas Sentinel-1 yielded an OA of 38%. The analysed reach of the Tankwa River had an actual length of 9 244 m. Based on the performance of Sentinel-2 data, further analysis was undertaken using Sentinel images acquired during the months of February, May and July of 2016. The results indicated that the lengths of the reaches of inundated Tankwa River were 2 809 m, 3 202 m and 2 890 m, respectively. Overall, the findings of this study show that an estimated length of a river inundated by water can be determined using new-generation Sentinel data and these results provide new insights on the dynamics of N-PRs - a previously challenging task with broadband multispectral satellite datasets. <![CDATA[<b>A GIS-based approach for identifying suitable sites for rainwater harvesting technologies in Kasungu District, Malawi</b>]]> A GIS-based approach for identifying suitable sites for rainwater harvesting (RWH) technologies was developed and applied in Kasungu District, Malawi. Data were obtained from reports, socio-economic survey documents of the area and maps. Field surveys were conducted in the villages of Chipala Extension Planning Area (EPA), in order to identify and evaluate the performance of existing RWH interventions, and determine factors for locating suitable areas for RWH. Observed soil moisture content was used to assess the water retention performance of the prevalent RWH technologies: contour tied ridging and soil mulching. A GIS-based Soil Conservation Service Curve Number (SCS-CN) method was used to map runoff potential for areas with RWH technologies, using physical factors of rainfall, land use, soil type and slope to estimate runoff potential. This was then integrated in a GIS database, with social-economic factors in the form of household income level and environmental factors, including impacts of implementing RWH, to determine the suitability of land areas for RWH in Kasungu District. One way analysis of variance (ANOVA) was used to test the impact of identified technologies by comparing the moisture content measurements for each of the identified technologies at 5% level of significance. The ANOVA results showed a statistically significant difference in the moisture measurements for the three technologies identified (P < 0.05). The RWH suitability map for the study area showed that 0.2% of the area considered had very high potential, 33.5% high, 55.9% moderate, 10.1% marginal and 0.3% not suitable for in-field RWH. The model was verified by locating the existing RWH on the suitability map obtained from GIS: 81% of RWH were located in the highly and moderately suitable areas whilst only 13% were located in areas of low suitability. Hence the developed model can reliably be used to predict potential areas for RWH. <![CDATA[<b>A water footprint approach to guide water resource management in data-scarce regions: A case study for the Upper Ewaso Ng'iro Basin, Mount Kenya</b>]]> Due to population growth and agricultural intensification, water scarcity is increasing in the Upper Ewaso Ng'iro Basin. Quantitative information is needed to improve the management of this resource, but is a challenge due to lack of hydrometeorological data. Using water footprint thinking, a pragmatic approach applying available information and simple assumptions was used to estimate blue and green water availability and consumption for different land uses and activities. Despite the attention it receives, flower production makes up a small component of the basin's water footprint (1.4% of blue water consumed, roses used 0.73%), although the drastic impact of horticulture on low flows during dry periods is recognized. Surface water evaporation from irrigation dams containing captured floodwaters or pumped groundwater has a water footprint comparable to greenhouse horticultural production itself. Small-scale irrigation was estimated to use 71.4% of the blue water consumed, while total commercial horticultural production was estimated to use 8.2%. Direct human consumption was estimated at 3% and livestock and wildlife consumption at 4.2% of consumed blue water. Labour opportunities were almost 10 times higher for roses than for maize per hectare and per m³ of water consumed. Water productivity in terms of selling price was 128 times higher for 1 tonne of roses than for 1 tonne of maize. This approach can be used in data-poor regions to advance understanding between multiple stakeholders (such as between farmers, pastoralists and conservationists) for participatory management, and to better understand the basin's water balance to estimate exploitable water resources. <![CDATA[<b>Proposed approaches to systematic planning of research and monitoring to support a South African inland fisheries policy</b>]]> A South African inland fisheries policy will depend on a reliable long-term supply of social-ecological data covering freshwater fisheries at a broad geographic scale. Approaches to systematic planning of research and monitoring are demonstrated herein, based on a fishery-independent gillnet dataset covering 44 dams, and geographic information system maps of monthly and annual climate variables, human land use, and road access in a 5 km zone around 442 dams. Generalised linear mixed models were used to determine the covariates of gillnet catch per unit effort. Such covariates are required for a model-based process to select a subset of state-owned dams for a long-term fishery survey programme. The models indicated a monthly climate influence on catch per unit effort and climatic drivers of fish species distributions. However, unexplained variation is overwhelming and precludes a model-based survey design process. Non-hierarchical clustering of 442 dams was then done based on annual climate and human land use variables around dams. The resulting clusters of dams with shared climate and land use characteristics indicates the types of dams that should be selected for monitoring to represent the full range of climate and land use characteristics. Surrounding land use could indicate the socioeconomic characteristics of fisheries, for example, dams that may support subsistence-based communities that require increased research effort. Finally, although primary catchments could be useful for organising national-scale management, land use cover in the 5 km zone around dams varied widely within the respective primary catchments. Beyond these proposed approaches to plan research, this study also reveals various data deficiencies and recommends additional future studies on other possible methods for systematic research planning. <![CDATA[<b>Standardisation of alien invasive Australian redclaw crayfish <i>Cherax quadricarinatus</i> sampling gear in Africa</b>]]> Freshwater crayfish are damaging invaders across southern Africa; however, monitoring techniques and efforts are disparate across the region as different sampling methods have been used. To develop a standard method for assessing redclaw crayfish Cherax quadricarinatus abundance, a survey was conducted to assess for differences in detection and catch per unit effort (CPUE) in Lake Kariba. Two sampling approaches were compared: opera traps baited with cooked maize meal historically used in crayfish surveys in Zimbabwe, and Promar collapsible traps baited with dry dog food, which have been used for assessments in South Africa and Swaziland. Baits were compared in the Barotse Floodplain in Zambia using the Promar trap. Detection probability (Pcapture) and CPUE were significantly lower for opera traps baited with cooked maize meal (Pcapture = 0.41; CPUE = 1.19 ± 0.24 ind.•trap -1•night -1) compared to the Promar traps baited with dry dog food (Pcapture = 0.67; CPUE = 4.53 ± 0.82 ind•trap -1•night -1). The Pcapture and CPUE for Promar traps baited with dog food (Pcapture = 0.89; CPUE = 4.29 ± 0.83 ind•trap-1•night -1) was significantly higher than for maize meal baited traps (Pcapture = 0.29; CPUE = 0.25 ± 0.17 ind•trap -1•night -1). Sex ratio and carapace length of crayfish sampled did not differ between sampling methods. Due to higher CPUE, the authors consider the Promar collapsible trap baited with dog food approach as the better method for determining crayfish population abundance and suggest that comparisons of abundance take this into consideration by applying conversion factors if different methods are applied.