Scielo RSS <![CDATA[Water SA]]> http://www.scielo.org.za/rss.php?pid=1816-795020080005&lang=en vol. 34 num. 5 lang. en <![CDATA[SciELO Logo]]> http://www.scielo.org.za/img/en/fbpelogp.gif http://www.scielo.org.za <![CDATA[<b>Merged rainfall fields for continuous simulation modelling (CSM)</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502008000500001&lng=en&nrm=iso&tlng=en Long sequences of rainfall at fine spatial and temporal detail are increasingly required, not only for hydrological studies, but also to provide inputs for models of crop growth, landfills, tailings dams, liquid waste disposal on land and other environmentally sensitive projects. Rainfall information derived from rain gauges, radar or satellites may not individually be adequate to meet the detail required by hydrological models or other water resource studies. Therefore, a suitable technique is required to estimate rainfall at finer spatial and temporal resolutions. Different techniques have been developed to merge rainfall information from rain gauges, radar and satellites in order to obtain the 'best' estimate of the 'true' rainfall field. However, the length of the radar and satellite estimated rainfall records is currently limited. In this study, the mean areal merged rainfall, derived from rain gauges and radar, was estimated for 26 subcatchments in the Liebenbergsvlei catchment, which is a research catchment, in South Africa for the period when radar data were available. By using the relationships derived between the merged rainfall and rain-gauge data, improved subcatchment rainfall may be estimated using the historical data from rain gauges located in and around the subcatchments. In most of the subcatchments the relationship between the daily mean areal merged rainfall of the subcatchment and the daily rainfall data from rain gauges is strong (R² > or = 0.5). The relationship between the daily rain gauges and mean areal merged rainfall of the subcatchments is used to adjust the historical rainfall data from the daily rain gauges in order to estimate long sequences of subcatchment rainfall for input to continuous simulation models (CSMs). <![CDATA[<b>Comparing available rainfall gridded datasets for West Africa and the impact on rainfall-runoff modelling results, the case of Burkina-Faso</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502008000500002&lng=en&nrm=iso&tlng=en Monthly rainfall data in Burkina-Faso, West Africa, over a period of 77 years are extracted from three different gridded data sets, available either on the web: CRU (Climatic Research Unit, Norwich, UK), SIEREM (HydroSciences Montpellier, France), or from the National Meteorological Center of Burkina-Faso. With a view to modelling the runoff-rainfall relationship at the monthly time step, these data are used at the 0.5°*0.5° scale. Despite mean, minimum, standard deviation and inter-annual variability being very similar for the period 1922 to 1998, the three gridded data sets used show an important spatial variability of values with time, and some differences are observed which lead to significantly different runoff-rainfall simulations. Comparison of the rainfall grids has shown that differences between the precipitation grids are more pronounced during years when the rainfall is lower; this also applies to areas where the rainfall is lower. The three different rainfall grids produce differences in mean rainfall of 4 to 11%, depending on the grids that are compared. While these results are obviously specific to the station networks and interpolation method used, they provide an indication of the differences that can arise. It is recommended that as many stations as possible are used to better assess areal rainfall. These biases have a strong influence on the results of the runoff-rainfall modelling (using the GR2M conceptual model): the Nash criteria show differences of about 20% and calculated flow of 30% to 40%. This study illustrates the levels of uncertainty when using available rainfall gridded data sets, for rainfall-runoff studies in West African developing countries, which is important in the context of predicting water resources for the future from the GCM outputs for the 21st century. <![CDATA[<b>Optimising water distribution systems using a weighted penalty in a genetic algorithm</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502008000500003&lng=en&nrm=iso&tlng=en Genetic algorithms (GAs) have become the preferred water system design optimisation technique for many researchers and practitioners. The main reason for using GAs is their ability to deal with nonlinear complex optimisation problems. The optimal decision in terms of designing, expansion/extending, addition or rehabilitation of water supply systems has to review possible options and select a cost-effective and efficient solution. This paper presents a new approach in determining a penalty value depending on the degree of failure, of the set pressure criteria, and the importance of the link supplying a specific node. Further modifications are also made in the cross-over and mutation procedures to ensure an increase in algorithm convergence. EPANET, a widely used water distribution network simulation model, is used in conjunction with the proposed newly developed GA for the optimisation of water distribution systems. The developed GA procedure has been incorporated in a software package called GANEO, which can be used to design new networks, analyse existing networks and prioritise improvements on existing networks. The developed GA has been tested on several international benchmark problems and has proved to be very efficient and robust. The EPANET hydraulic modelling software as well as the developed GANEO software, which performs the optimisation of the water distribution network, is freeware. The software provides a tool for consulting engineers to optimise the design or rehabilitation of a water distribution network. <![CDATA[<b>Assessment of the contribution of groundwater discharges to rivers using monthly flow statistics and flow seasonality</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502008000500004&lng=en&nrm=iso&tlng=en Groundwater discharge is believed to dominate dry season flows in perennial river systems and to sustain aquatic biodiversity. River flow statistics, extracted from the SPATSIM modelling system, were used to estimate the contribution of groundwater to river flow regimes. The flow statistics were compared for the principal aquifer types (based on major geological formations) in South Africa. This analysis focused on seasonal variation in flows rather than the annual totals or Baseflow Index. Groundwater discharge is expected to reduce flow variability and sustain flows, making flow concentrations lower than rainfall concentrations. Catchments dominated by carbonates have the greatest proportion of baseflow (37%), followed by basement complex (31%) and extrusive aquifer types (31%). The weak relationships between river flow indexes (particularly the Baseflow Index, Coefficient of Variation and Hydrological Index) and the seasonality or concentration statistics imply that catchment storage characteristics and other non-climatic factors play an important role in flow regulation. The geographic distribution of total flow concentrations differs markedly from rainfall concentrations, further evidence that non-climatic factors are important determinants of flow regimes. Karoo dykes and sills, extrusives and unconsolidated deposits are under-represented and the TMG sub-type, carbonates and basement complex and younger granites are over-represented among catchments with evenly distributed baseflows. The Baseflow Index and groundwater-fed baseflow are ecologically meaningful variables but lack clear thresholds that correspond with ecologically important changes in river flow regimes, for example perennial versus seasonal flow. Flow concentrations and percentage zero flows are useful and potentially ecologically important variables and should be tested as predictors of the aquatic and riparian biodiversity of river systems at a range of scales. <![CDATA[<b>Interplay of factors involving chlorine dose, turbidity flow capacity and pH on microbial quality of drinking water in small water treatment plants</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502008000500005&lng=en&nrm=iso&tlng=en In an endeavour to ascertain the interplay of factors involving chlorine dose, turbidity and flow capacity on microbial quality of drinking water in small water treatment plants (SWTPs), data from a previous study were analysed. The findings showed that most of the SWTPs were not producing water of safe microbial quality. Fifty one percent (51%) and seventy three (73%) of the SWTPs were below the stipulated limits for residual chlorine in final water and water at the point of use respectively. Current flow capacity was a major determinant of the microbial water quality indicators but no association was found between the dose of chlorine used for water treatment and the microbial water quality indicators. However, a combination of the amount of chlorine dose used up during treatment, flow capacity and change in turbidity contributed to about 65% of the amount of heterotrophic plate counts removed from raw water. Current flow capacity contributed less than 14% of the variation in chlorine dose used in water treatment at the plants. Turbidity tended to correlate and contribute more to the prediction of total coliform counts while faecal coliform counts were determined by current flow capacity and conductivity. Treatment plants with current flow capacity of over 50 Mℓ/d tended to be more efficient in heterotrophic plate count removal. In conclusion, this study noted that most of the SWTPs were using a chlorine dosage that was below the amount required by their respective current flow capacity; possible micro-organism resistance to chlorine and the significant effect of the level of turbidity on the microbial quality of treated water. <![CDATA[<b>Microbial community study of the process</b>: <b>and groundwater of the Sishen Iron-Ore Mine, South Africa</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502008000500006&lng=en&nrm=iso&tlng=en Investigating the microbial community of the Sishen Iron-Ore Mine in South Africa has become a topic of interest. Micro-organisms could prove to be useful in bioleaching processes, resulting in the minimisation of the negative impact that certain substances, such as phosphorus (P) and potassium (K), have on the economic functioning of the mine. The objective of this investigation was, therefore, to determine which micro-organisms were indigenously present in the process- and groundwater systems of the mine. Groundwater samples and three different process water samples were collected from the mine, followed by chemical- and microbial community analyses. Microbial inhibition was observed in all the process water samples due to the relatively high levels of copper, chromium and zinc present. Aeromonas hydrophila proved to be the dominant bacterial species in all the process water samples, whereas Pseudomonas aeruginosa and Herbaspirillum spp. were observed in the groundwater of the mine. None of the isolated micro-organisms have been implicated in bioleaching practices, and therefore these organisms will not be included as candidates for the removal of P and K from the iron-ore of the Sishen Iron-Ore Mine. <![CDATA[<b>Measurement of water-use by <i>Jatropha curcas</i> L. using the heat-pulse velocity technique</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502008000500007&lng=en&nrm=iso&tlng=en In response to the proposed introduction of the potential bio-diesel species Jatropha curcas (Linnaeus) to South Africa, field experiments were conducted to investigate its likely water-use impacts relative to other forms of vegetative land use. As no existing water-use data could be found for this species worldwide, sap flow in Jatropha curcas trees was measured continuously for a 17-month period at two sites in eastern South Africa. These consisted of young (4-year-old) trees at a relatively wet site and mature (12-year-old) trees at a dry site. The heat-ratio method of the heat-pulse technique was utilised, together with measurements of meteorological variables and soil water. Sap- flow rates varied according to tree age, season, prevailing meteorological conditions, and soil moisture levels. Peak sap-flow rates occurred during the warm wet summer months, but due to the deciduous nature of the species, water use was negligible during winter. Scaled-up sap-flow measurements resulted in estimates of total annual transpiration of 1 983 ℓ (147 mm) for a 4-year-old J. curcas tree, and 4 884 ℓ (362 mm) for a 12-year-old J. curcas tree. The study concluded that the J. curcas trees studied were conservative in their water use, and were unlikely to transpire more water than indigenous vegetation types of the area. <![CDATA[<b>First steps in the development of a water temperature model framework for refining the ecological Reserve in South African rivers</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502008000500008&lng=en&nrm=iso&tlng=en Ecological Reserve determination for rivers in South Africa presently does not include a water temperature component, in spite of its importance in determining species distribution patterns. To achieve this requires an understanding of how lotic thermographs from South African rivers differ from northern hemisphere rivers, to avoid mismanaging rivers based on incorrect regional assumptions. Hourly water temperatures from 20 sites in four river systems, representing a range of latitudes, altitudes and stream orders, were assessed using a range of metrics. These data were analysed using principal component analyses and multiple linear regressions to understand what variables a water temperature model for use in ecoregions within South Africa should include. While temperature data are generally lacking in low- and higher-order South African rivers, data suggest that South African rivers are warmer than northern hemisphere rivers. Water temperatures could be grouped into cool, warm and intermediate types. Based on temperature time series analyses, this paper argues that a suitable water-temperature model for use in ecological Reserve determinations should be dynamic, include flow and air temperature variables, and be adaptive through a heat exchange coefficient term. The inclusion of water temperature in the determination and management of river ecological Reserves would allow for more holistic application of the National Water Act's ecological management provisions. Water temperature guidelines added to the ecological Reserve could be integrated into heuristic aquatic monitoring programmes within priority areas identified in regional conservation plans. <![CDATA[<b>Biological responses to a resumption in river flow in a freshwater-deprived, permanently open Southern African estuary</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502008000500009&lng=en&nrm=iso&tlng=en The Kariega Estuary is a freshwater-deprived system due to numerous impoundments in the catchment. This system has had little or no horizontal salinity gradient over the last 15 years, with hypersaline conditions sometimes predominating in the upper reaches. Following high rainfall events in the catchment during the spring of 2006, including a flood event (approximate 1:10 year) in August 2006, a series of riverine pulses entered the estuary and a horizontal salinity gradient was established. This study examined the influence of this freshwater pulse on four components of the biota within the estuary, namely the zooplankton, and larval, littoral and demersal fishes. The study demonstrated that in three of these components elevated densities were recorded following the riverine input, with only the littoral fishes retaining an almost constant density. In addition, changes in the relative contributions of the estuarine utilisation classes for all three fish groups examined indicated that freshwater input into these systems positively influences the abundances. This has significant implications for water managers as it demonstrates the importance of an Ecological Reserve (defined as 'the water required to protect the aquatic ecosystems of the water resource') for this system. <![CDATA[<b>'Alternative futures' of the Okavango Delta simulated by a suite of global climate and hydro-ecological models</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502008000500010&lng=en&nrm=iso&tlng=en The natural resources of the Okavango Delta, a large wetland in semi-arid Botswana, form the basis of livelihoods of the local population and support economically important high-end tourism. The hydro-ecological system is dynamic at various time scales, responding to climate variability, and both flood and drought conditions have in the past put pressure on the system's users. Human-induced climate change can potentially exacerbate the effects of existing climate variability. In this paper, we present simulated future hydro-ecological conditions in the Okavango Delta generated by a step-wise modelling procedure. The outputs of three different global climate models are used to drive a suite of hydrological models. Lastly, a rule-based dynamic model relates hydroperiod conditions to vegetation assemblages. The simulated future conditions vary from much drier to much wetter than those recorded in the past. Models indicate that climatic change would result in change in both extent and distribution of the major ecotopes of the Okavango Delta. Importantly, the different ecotopes will be affected to varying degrees. The projected changes will have consequences for the wildlife-based management of the system. They will affect, for example, available grazing and migration/movement patterns of large herbivores, as well as fish. Such consequences can have rapid up-trophic level effects, ultimately leading to potentially substantial impacts on the economy. The main conclusion to be drawn is that management planning and land-use systems should be as flexible as possible. <![CDATA[<b>Determination of selected organochlorine pesticide (OCP) compounds from the Jukskei River catchment area in Gauteng, South Africa</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502008000500011&lng=en&nrm=iso&tlng=en Organochlorine pesticides (OCPs) are continually detected in the environment due to their increasing applications in agriculture and industry. The presence of OCPs in the environment is not desirable since they are well known to have negative impact in humans, animals and birds. Thus, there has been a continual demand to monitor the presence of OCPs within the environment. Liquid-liquid extraction (LLE) and Soxhlet extraction (SE) methods (using dichloromethane as the extracting solvent,) were optimised and evaluated for the determination of these compounds in surface water (unfiltered and filtered) and sediment samples. The crude extracts obtained were subjected to column chromatography for clean-up. Thereafter, 1 µℓ of the cleaned extracts were injected into the GC equipped with ECD. Percentage recoveries obtained for OCPs ranged from 98.90±7.32 (2,4'-DDE) - 124.1±8.23 endosulfan II (ENDO II) % and from 98.99±5.30 (2,4'-DDE) - 121.1±0.38 (4,4'-DDE) % in spiked triply distilled water and sediment samples respectively. The levels of OCPs obtained in unfiltered environmental water samples ranged from 0.631±0.03 (γ-HCH) - 1 540±0.19 ng·mℓ-1 (4,4'-DDT) while levels in filtered water samples ranged from 0.895±0.01 (γ-HCH) - 9 089±0.08 ng·mℓ-1 (HEPTA). Levels of analysed OCPs obtained in sediments ranged from 0.266±0.01 (δ-HCH) - 22 914±2.85 ng·gdw-1 (2,4'-DDE). Analytes adsorbed on the sample bottles used for water samples collection gave levels which ranged from 0.01±0.01 - 1.06±0.02 ng·mℓ-1 for OCPs. The levels obtained from the catchment were significantly higher than the water criteria values recommended by USEPA and DWAF for the protection of the aquatic environment. Levels obtained were also higher than those of other studies conducted so far in South African aquatic environments. There is, therefore, a definite pollution of the Jukskei River catchment by the OCPs studied. <![CDATA[<b>Distribution of the pill clam <i>Pisidium langleyanum </i>Melvill & Ponsonby, 1891 (Bivalvia: Sphaeriidae) in South Africa</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502008000500012&lng=en&nrm=iso&tlng=en This article focuses on the geographical distribution and habitats of the pill clam, Pisidium langleyanum as reflected by 632 samples on record in the database of the National Freshwater Snail Collection (NFSC). The 177 different loci (¹/16 -degree squares) from which these samples were collected display a relatively continuous distribution in southern Gauteng, north-eastern Free State, the central area of Mpumulanga and the western part of Lesotho. However, it is discontinuously spread through KwaZulu-Natal and the Eastern Cape, poorly represented in North West, nearly absent in the Northern and Western Cape and completely absent from Limpopo. Details of each habitat as described by collectors during surveys were statistically analysed, as well as altitude and mean annual air temperatures and rainfall for each locality. This species was reported from 10 of the 14 water-body types represented in the database, but the largest number of samples was recovered from rivers, swamps and streams. Chi-square and effect-size values were calculated and an integrated decision tree constructed from the data which indicated that temperature, altitude, types of water-body and substrata were the important factors that significantly influenced the distribution of P. langleyanum in South Africa. In view of the many agents reported for this genus elsewhere in the world that could facilitate its passive dispersal and the fact that this species was already recorded in 1891 from South Africa, it is suggested that its absence in large areas of this country could most probably be attributed to unsuitable environmental conditions. The possible effect of climatic changes on the geographical distribution of P. langleyanum and the conservation status of Pisidium species in South Africa is briefly discussed. The feasibility to exploit this species for monitoring heavy metal pollution in freshwater biotopes and its ability to act as intermediate host for economically important trematode parasites should be investigated. <![CDATA[<b>Exposure of rural households to toxic cyanobacteria in container-stored water</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502008000500013&lng=en&nrm=iso&tlng=en Cyanobacteria are potent producers of cyanotoxins that may present a health risk to people. This is especially important in rural areas where people use untreated surface water, containing cyanobacteria, for household purposes including cooking and drinking. Water is collected from these sources mainly in plastic containers, transported home and stored during use. This study investigated the occurrence of cyanobacteria and their associated toxins in these containers as well as in the associated surface water sources. The results suggest that cyanobacteria are transferred from the water sources to the containers and then survive and possibly grow in biofilm forming inside the vessels. Their associated cyanotoxins were not found in any health-significant quantities in containers. However, the occurrence of cyanobacteria in the water used by the households collected in containers clearly indicates that it can be an important route of exposure especially if toxic cyanobacteria are present in the source water. In several cases a risk of cyano-intoxication might exist unless the households undertake preventative measures. <![CDATA[<b>Probabilistic risk assessment of the environmental impacts of pesticides in the Crocodile (west) Marico catchment, North-West Province</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502008000500014&lng=en&nrm=iso&tlng=en External agricultural inputs, such as pesticides, may pose risks to aquatic ecosystems and affect aquatic populations, communities and ecosystems. To predict these risks, a tiered approach was followed, incorporating both the PRIMET and PERPEST models. The first-tier PRIMET model is designed to yield a relatively worst-case risk assessment requiring a minimum of input data, after which the effects of the risks can be refined using a higher tier PERPEST model. The risk assessment initially depends on data supplied from local landowners, pesticide characteristic, application scheme and physical scenario of the environment under question. Preliminary results are presented, together with ecotoxicological data on several frequently-used pesticides in a section of the Crocodile (west) Marico Water Management Area (WMA) in South Africa. This area is historically known to have a high pesticide usage, with deltamethrin, aldicarb, parathion, cypermethrin and dichlorvos being the main pesticides used. Deltamethrin was indicated as having the highest probability of risks to aquatic organisms occurring in the study area. Cypermethrin, parathion, dichlorvos, carbaryl, bromoxynil, linuron, methomyl and aldicarb were all indicated as having possible risks (ETR 1-100) to the aquatic environment. Pesticides posing no risk included fenamiphos, abamectin, pendimethalin, captan, endosulfan, alachlor, bentazone and cyromazine (ETR<1). The pesticides posing a possible risk to the aquatic ecosystem were evaluated further to determine their effects on 8 grouped endpoints using the PERPEST effect model. Deltamethrin and cypermethrin were again noted as posing the greatest risk and clear effects were eminent for aquatic insects and macro-crustaceans, followed by micro-crustaceans and rotifers. High percentages of clear effects on insects were also observed for carbaryl, parathion and dichlorvos. Linuron was indicated as having minimal clear effects on community metabolism, macrophytes and phytoplankton classes, while lesser clear effects of bromoxynil occurred on periphyton communities. Application of both the lower-tier PRIMET and higher-tier PERPEST models showed similar trends in that they both ranked the top 5 pesticides in the same order of risk. This approach offers a significant improvement over the presently-used simulation models or use of safety factors. It is therefore especially useful in developing countries such as South Africa, where pesticide environmental risk information is scarce. Although these models were effectively used in this study, it still has to be validated further under South African conditions <![CDATA[<b>The effect of vegetation harvest on the operation of a surface flow constructed wetland</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502008000500015&lng=en&nrm=iso&tlng=en Constructed wetlands represent a low-cost and highly efficient municipal wastewater treatment alternative, due to their low technological and energy demands. Wetland vegetation releases an amount of carbon to the system, when it is decomposed (winter period). Part of this organic matter could remain in the system, and will be decomposed at very low rates during winter and spring. In this research, a constructed superficial-flow wetland was divided into two equal parts and vegetation (Typha latifolia) was harvested in one of them. The organic load applied to the system was 11.2 gBOD/m²·d. The control of the organic matter was carried out during 141 d (111 d in winter and 30 d in spring). Differences in efficiencies (TSS, BOD and COD), were observed between both types of the wetland, with an important increase in these differences during spring. Vegetation released organic matter to the system, specially suspended and biodegradable matter. BOD and TSS released per dry gram of Typha were 4.24 mgBOD/gTypha and 4.36 mgTSS/gTypha, respectively. Harvest is a recommended practice in systems treating diluted wastewater, especially in productive areas like the Mediterranean. The recommendations can also be applied to a broader geographic area. <![CDATA[<b>Clustering of groundwaters by Q-mode factor analysis according to their hydrogeochemical origin</b>: <b>a case study of the Cariri Valley (Northern Brazil) wells</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502008000500016&lng=en&nrm=iso&tlng=en Factor analysis was applied to 56 groundwater samples collected from wells located in the Araripe Sedimentary Basin, in the north-east of Brazil. The parameters are a set of 9 physicochemical, chemical, and isotope data, constituted by electrical conductivity (EC), ionic concentrations of Ca2+, Mg2+, Na+, K+, Cl-, SO4(2-), alkalinity and δ18Oº/00. In R-mode factor analysis, the first 3 factors explain 62% of the variance, their loadings allowing the interpretation of hydrogeochemical processes that take place in the area. Q-mode factor analysis on the 56 water samples decreases space dimensionality to 6, explaining 93% of the total database information. With the aid of a scalar and angular measurement method, objects were clustered, resulting in 11 groups classified according to their inherent characteristics, related to their hydrogeological origin. <![CDATA[<b>Cyclodextrin nanosponges in the removal of organic matter to produce water for power generation</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502008000500017&lng=en&nrm=iso&tlng=en The water treatment processes employed by coal-fired power stations do not completely remove most of the natural organics (volatile component) from the feed water used for power generation. Currently, polyaluminium chloride, polyelectrolyte and ion exchange resins are used to treat water at power stations. The effectiveness of water-insoluble cyclodextrin (CD) polymers in the removal of natural organics (volatile component), dissolved organic carbon (DOC) and total organic carbon (TOC) from water collected at a specific power plant is reported. Results obtained from this study show that, despite the usage of the treatment processes, natural organic species emanating from raw water still persist throughout the stages of the water treatment process. The polymers on the other hand demonstrated the ability to remove dissolved organic carbon (DOC) from raw water by as much as 84%, whilst TOC removal was relatively low.