Scielo RSS <![CDATA[Journal of Energy in Southern Africa]]> http://www.scielo.org.za/rss.php?pid=1021-447X20140004&lang=en vol. 25 num. 4 lang. en <![CDATA[SciELO Logo]]> http://www.scielo.org.za/img/en/fbpelogp.gif http://www.scielo.org.za <![CDATA[<b>The sensitivity of the South African industrial sector's electricity consumption to electricity price fluctuations</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-447X2014000400001&lng=en&nrm=iso&tlng=en Numerous studies assume that the price elasticity of electricity demand remains constant through the years. This, in turn, means that these studies assume that industrial consumers react in the same way to price fluctuations regardless of the actual price level. This paper proposes that the price elasticity of industrial electricity demand varies over time. The Kalman filter methodology is employed in an effort to provide policy-makers with more information on the behaviour of the industrial sector with regards to electricity price changes, focusing on the period 1970 to 2007. Other factors affecting electricity consumption, such as real output and employment, are also captured. The findings of this paper show that price sensitivity has changed since the 1970s. It has decreased in absolute values from -1 in 1980 to -0.953 in 1990 and then stabilised at approximately -0.95 which indicates that the industrial sector has experienced an inelastic demand. In other words, the behaviour of industrial consumers did not vary significantly during the 2000s. In the long run and as the prices increase, probably reaching the levels of the 1970s or even before, the industrial sector's behaviour might change and the elasticity might end up at levels higher than one (elastic). <![CDATA[<b>ANN-based evaluation of wind power generation: A case study in Kutahya, Turkey</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-447X2014000400002&lng=en&nrm=iso&tlng=en Wind energy is one of the most significant and rapidly developing renewable energy sources in the world and it provides a clean energy resource, which is a promising alternative in the short term in Turkey. The wind energy potential in various parts of Turkey is becoming economical due to reductions in wind turbine costs, and in fossil fuel atmospheric pollution. This paper is to present, in brief, wind potential in Turkey and to perform an investigation on the wind energy potential of the Kutahya region. A wind measurement station was established at Dumlupinar University Main Campus in order to □gure out the wind energy potential in the province. This study analyses the electricity generation capacity of the Kutahya region, Turkey, which uses the wind power system. In the study, the wind data collected from wind measurement stations between July 2001 and June 2004 (36 months) were evaluated to determine the energy potential of the region. Using this energy potential value, the power generation capacity of Kutahya was investigated for 17 different wind turbines. In this analysis, an ANN-based model and Weibull and Rayleigh distribution models were used to determine the power generation. In the ANN model, different feed-forward back propagation learning algorithms, namely Pola-Ribiere Conjugate Gradient, Levenberg-Marquardt and Scaled Conjugate Gradient were applied. The best appropriate model was determined as Levenberg-Marquardt with 15 neurons in a single hidden layer. Using the best ANN topology, it was determined that all the turbines were profitable except turbine type 1. The system with the turbine type 3 was decisively the most profitable case as determined at the end of the study according to Net Present Value concept. <![CDATA[<b>Performance analysis of a vapour compression-absorption cascaded refrigeration system with undersized evaporator and condenser</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-447X2014000400003&lng=en&nrm=iso&tlng=en In a present study, the performance of a vapour compression-absorption cascaded refrigeration system (CRS) under fouled conditions was analysed. The main effect of fouling is to decrease the effectiveness of the heat exchanger. Thus, the overall conductance (UA) of the heat exchanger is decreased. Hence, another interpretation of fouling is to reduce the effective size of the heat exchanger. In the present work, the percentage decrease in the overall conductance value (UA) of evaporator and condenser due to their fouling is varied from 0 to 50% and its consequences on various aspects of CRS are generated to ascertain any possible patterns. The detailed first law analysis reveals that for a clean evaporator and condenser, the electricity consumption is 67.5% less than vapour compression system (VCS) for the same cooling capacity. CRS is able to save only 61.3% of electrical energy when evaporator and condenser conductance is reduced by 50% due to fouling. Evaporator and condenser fouling decreased the COP and rational efficiency of the system by 4.7% and 10.5% respectively. It is also important to note that irreversibility in the evaporator and condenser is increased by 42.4% and 62.1% respectively, when their individual performance is degraded by 50% due to fouling. <![CDATA[<b>Mapping wind power density for Zimbabwe: a suitable Weibull-parameter calculation method</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-447X2014000400004&lng=en&nrm=iso&tlng=en The two-parameter Weibull probability distribution function is versatile for modelling wind speed frequency distribution and for estimating the energy delivery potential of wind energy systems if its shape and scale parameters, k and c, are correctly determined from wind records. In this study, different methods for determining Weibull k and c from wind speed measurements are reviewed and applied at four sample meteorological stations in Zimbabwe. The appropriateness of each method in modelling the wind data is appraised by its accuracy in predicting the power density using relative deviation and normalised root mean square error. From the methods considered, the graphical method proved to imitate the wind data most closely followed by the standard deviation method. The Rayleigh distribution (k=2 is also generated and compared with the wind speed data. The Weibull parameters were calculated by the graphical method for fourteen stations at which hourly wind speed data was available. These values were then used, with the assistance of appropriate boundary layer models, in the mapping of a wind power density map at 50m hub height for Zimbabwe. Keywords: Weibull distribution parameters, graphical method, power density. <![CDATA[<b>Application of multiple regression analysis to forecasting South Africa's electricity demand</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-447X2014000400005&lng=en&nrm=iso&tlng=en In a developing country such as South Africa, understanding the expected future demand for electricity is very important in various planning contexts. It is specifically important to understand how expected scenarios regarding population or economic growth can be translated into corresponding future electricity usage patterns. This paper discusses a methodology for forecasting long-term electricity demand that was specifically developed for applying to such scenarios. The methodology uses a series of multiple regression models to quantify historical patterns of electricity usage per sector in relation to patterns observed in certain economic and demographic variables, and uses these relationships to derive expected future electricity usage patterns. The methodology has been used successfully to derive forecasts used for strategic planning within a private company as well as to provide forecasts to aid planning in the public sector. This paper discusses the development of the modelling methodology, provides details regarding the extensive data collection and validation processes followed during the model development, and reports on the relevant model fit statistics. The paper also shows that the forecasting methodology has to some extent been able to match the actual patterns, and therefore concludes that the methodology can be used to support planning by translating changes relating to economic and demographic growth, for a range of scenarios, into a corresponding electricity demand. The methodology therefore fills a particular gap within the South African long-term electricity forecasting domain. <![CDATA[<b>A systems approach to urban water services in the context of integrated energy and water planning: A City of Cape Town case study</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-447X2014000400006&lng=en&nrm=iso&tlng=en The City of Cape Town derives the bulk of its present water supply from surface water resources and is the central water service authority for metropolitan consumers. The City is also a provider of bulk water to neighbouring municipalities. An exploration of the energy consumption for water and sanitation services for the City of Cape Town was conducted with an emphasis on water supply augmentation options for the near future (2011-2030). A systems analysis of municipal urban water services was undertaken to examine the energy requirements of supply alternatives and the efficacy of the alternatives in respect of supply availability and reliability. This was achieved using scenario based analysis incorporating a simple additive value function, to obtain a basic performance score, to rank alternatives and facilitate a quantitative comparison. Utilising the Water Evaluation and Planning hydrological modelling tool, a model for urban water services was developed for the City and used to conduct scenario analyses for a representative portfolio of previously identified options. Within the scope of the research objectives, the scenario analyses examines the direct energy consumption for the provision of water services for the City as influenced by external factors such as population growth, surface water runoff variability, available alternatives and the policies that are adopted which ultimately determine the future planning. It is contended that the modelling process presented here integrates energy and water planning for an assessment of water and energy resources required for future growth, and the optimal measures that could be pursued to reconcile the demand for water and the concomitant energy requirements. <![CDATA[<b>Improving stability of utility-tied wind generators using dynamic voltage restorer</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-447X2014000400007&lng=en&nrm=iso&tlng=en The generation of electricity using wind power is significantly increasing and has received considerable attention in recent years. One important problem with the induction generator based wind farms is that they are vulnerable to voltage disturbances and short circuit faults. Any such disturbance may cause wind farm outages. Since wind power contribution is in considerable percentage, such outages may lead to power system stability issues and also violate the grid code requirements. Thus, improving the reliability of wind farms is essential to maintain the stability of the system. The proposed strategy is to use Dynamic Voltage Restorer (DVR), which is one of the promising devices to compensate the voltage disturbance and to improve the stability of the system. It provides the wind generator with the fault ride through capability and improves the reliability of the system. Extensive simulation results are included to illustrate the operation of DVR and fault compensation. <![CDATA[<b>Renewable energy choices and their water requirements in South Africa</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-447X2014000400008&lng=en&nrm=iso&tlng=en South Africa is an arid country, where water supply is often obtained from a distant source. There is increasing pressure on the limited water resources due to economic and population growth, with a concomitant increase in the energy requirement for water production. This problem will be exacerbated by the onset of climate change. Recently, there have been concerns about negative impacts arising from the exploitation of energy resources. In particular, the burning of fossil fuels is significantly contributing to climate change through the emission of carbon dioxide, a major greenhouse gas. In addition, fossil fuels are being depleted, and contributing to decreased energy security. As a result of this, the international community has initiated various interventions, including the transformation of policy and regulatory instruments, to promote sustainable energy. With this in mind, South Africa is making policy and regulatory shifts in line with international developments. Renewable energy is being promoted as one way of achieving sustainable energy provision in the country. However, some issues require scrutiny in order to understand the water footprint of renewable energy production. Due to the large gap that exists between water supply and demand, trade-offs in water allocation amongst different users are critical. In this vein, the main objective of this study was to investigate and review renewable energy choices and water requirements in South Africa. Data were acquired through a combination of a desktop study and expert interviews. Water withdrawal and consumption levels at a given stage of energy production were investigated. Most of the data was collected from secondary sources. Results show that there is limited data on all aspects of water usage in the production chain of energy, accounting in part for the significant variations in the values of water intensity that are reported in the literature. It is vital to take into account all aspects of the energy life cycle to enable isolation of stages where significant amounts of water are used. It is found that conventional fuels (nuclear and fossil fuels) withdraw significant quantities of water over the life-cycle of energy production, especially for thermoelectric power plants operated with a wet-cooling system. The quality of water is also adversely affected in some stages of energy production from these fuels. On the other hand, solar photovoltaic and wind energy exhibit the lowest demand for water, and could perhaps be considered the most viable renewable options in terms of water withdrawal and consumption. <![CDATA[<b>Energy consumption and economic growth nexus: Panel co-integration and causality tests for Sub-Saharan Africa</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-447X2014000400009&lng=en&nrm=iso&tlng=en This study reassesses the causal relationships between energy consumption and economic growth in 18 Sub-Saharan Africa countries over the period 1980-2011. The Panel Unit Root Test results show that variables (both exogenous and endogenous) are stationary at their first difference with individual effects and individual linear trends, while the results of panel co-integration tests show that energy consumption and economic growth do have a stable long-run equilibrium relationship. There is unidirectional causality from energy consumption to economic growth in East and the Southern Africa Sub-region, which supports the growth hypothesis. As a result, the related authorities in the regions should take a special interest in different sources of energy and invest more in this sector, make suitable policies in this regard and find new alternative and cheap sources of energy. But, there is no causality between energy consumption and economic growth in Central and the West Africa Sub-region, which is in line with the neutrality hypothesis. In other words, both energy consumption and economic growth are neutral with respect to each other. Our results confirm the inconclusive nature of a causality relationship between energy consumption and economic growth. <![CDATA[<b>Energy models: Methods and characteristics</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-447X2014000400010&lng=en&nrm=iso&tlng=en Given the importance of models in complicated problem solving, an inappropriate energy model can lead to inaccurate decisions and poor policy prescriptions. This paper aims at developing a decision support tool with which the selection of appropriate model characteristics can be facilitated for developing countries. Hence, it provides a comparative overview of different ways of energy models characterization and extracts the underlying relationships amongst them. Moreover, evolution of dynamic characteristics of energy models for developing countries is identified according to the previous studies on the developed and developing countries. To do this, it reviews the related literature and follows a systematic comparative approach to achieve its purposes. These findings are helpful in cases where model developers themselves are looking for appropriate characteristics in terms of certain purpose or situation. <![CDATA[<b>Hybrid electromechanical-electromagnetic simulation to SVC controller based on ADPSS platform</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-447X2014000400011&lng=en&nrm=iso&tlng=en To test the dynamic performance and damping features of a static var compensator (SVC) controller accurately in large-scale interconnected AC/DC hybrid power systems, it is of vital significance to build the detailed electromagnetic transient model. However, it is unrealistic and time-consuming to build the detailed models of all the devices in the actual large-scale power grid. Utilizing the hybrid simulation function in the advanced digital power system simulator (ADPSS) and by dividing the large-scale power grid into the electromagnetic transient sub-grids and electromechanical sub-grids, the computation speed of real-time simulation is remarkably enhanced by the parallel computational capabilities of digital simulator. The SVC controller and the nearby substation are modelled in the electromagnetic transient sub-grid, and the residue subnetworks are modelled in the electromechanical sub-grid. This paper focuses on the mechanism of the hybrid electromechanical and electromagnetic simulation, the detailed modelling and the ADPSS-based digital closed-loop test methodologies of the SVC controller. Eventually, the validity and effectiveness of the modelling and control methods are confirmed by the experimental results. <![CDATA[<b>Investigations on the absorption spectrum of TiO<sub>2</sub> nanofluid</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-447X2014000400012&lng=en&nrm=iso&tlng=en Nanofluids are tailored nano- colloidal suspensions of nanoparticles in a suitable base fluid. This present work investigates the absorption spectrum in TiO2-water nanofluids to identify the potential application of nanofluids in Direct Absorption Solar Collectors (DASC). Nanoparticles of Titanium dioxide (TiO2) are prepared by sol gel and characterized by X Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). TiO2-water nanofluids with weight fraction of 0.1% are prepared by a two-step process with sonication. The prepared nanofluids are investigated for their stability by a gravity sedimentation method and for their optical property by UV-Vis spectroscopy. Stability of nanofluid is essential for the applications of nanofluid in DASC. TiO2 nanoparticles with a crystallite size of 43nm are obtained .The SEM image reveals the agglomerated state of TiO2 nanoparticles and the stability of TiO2 nanofluid is reported as 9-10days. UV results indicate the decrease in absorption from 440-500nm, complete absorption from 500-700nm and increase in absorption from 700-900nm.TiO2 nanofluids are recommended as potential candidates for DASC in UV and IR regions. <![CDATA[<b>Dynamic performance improvement of wind farms equipped with three SCIG generators using STATCOM</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-447X2014000400013&lng=en&nrm=iso&tlng=en The main causes of wind farms disconnection from the grid is the three-phase grid faults at the point common coupling (PCC) e.g. the voltage dip. The use of a Static Synchronous Compensator (STATCOM) which is from the family of Flexible AC Transmission System (FACTS) devices can be used effectively in a wind park based on FSIG to provide transient voltage and to improve wind system stability. Due to the asynchronous operation nature, system instability of wind farms based on FSIG (Fixed Speed Induction Generator) is largely caused by the reactive power absorption by FSIG because due to the large rotor slip during grid fault. STATCOM contributes to control the grid voltage at PCC and maintain wind farm connection to the grid during some severe conditions of grid faults and used for power flow control and for damping power system oscillations. The evaluation of this control strategy using (STATCOM) is investigated in terms of regulation reactive power and transient stability of the wind farm during grid disturbances.