Scielo RSS <![CDATA[South African Journal of Chemistry]]> vol. 70 num. lang. es <![CDATA[SciELO Logo]]> <![CDATA[<b>Understanding the Precipitated Calcium Carbonate (PCC) Production Mechanism and Its Characteristics in the Liquid-Gas System Using Milk of Lime (MOL) Suspension</b>]]> This study investigates the effect of operating variables and influence of milk of lime (MOL) conditions in PCC using a modified reactor. The variables includes: Ca(OH)2 feed concentration at 0.5 M-2.0 M and CO2 flow rates at 224.0 mL min-1 and 379.5 mL min-1, on the particle morphology and size in the gas-liquid route precipitation. The particle morphology and texture as well as the chemical content were sufficiently authenticated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-ray fluorescence (XRF). Experimental data show that lower concentration (<1.0 M) favoured the formation of rhombohedra calcite crystals with the particle size below 100 nm. However, increase in concentration and gas flow rate yielded a coarser crystal particles. Two polymorphs were produced at1Mreactant, i.e. rhombohedra calcite with CO2 flow rate of 224 mL min-1 and prismatic calcite at 380 mL min-1. Molarities higher than 1 M yielded a coarser prismatic crystals, and also has a tendency to crystallize into scalenohedron species especially with higher reactant concentration. <![CDATA[<b>Lanthanide(III) complexes with tridentate Schiff base ligand, antioxidant activity and X-ray crystal structures of the Nd(III) and Sm(III) complexes</b>]]> The tridentate N4-type Schiff base was synthesized from the condensation reaction of 2-hydrazinopyridine and pyridine-2-carbaldehyde. Neodymium and Samarium complexes were isolated when the corresponding nitrate salt was added to the solution of the ligand. The isolated compounds were characterized by elemental analyses, IR study, room temperature magnetic measurements and single X-ray crystal diffraction of the two crystals. Both complexes crystallize in the monoclinic system with space group P21/c.The cell parameters of the Nd complex are a = 11.0927(8)Å,b = 17.9926 (13) Å, c = 11.9395(9) Å and β = 115.274(5) ° while the Sm complex shows parameters cell of a = 11.0477(8) Å, b = 17.9254(13) Å, c = 11.9149(8) Å and β = 115.489(5) °. The X-ray study reveals isotopic Nd/Sm binuclear structures were each metal ion is nine-coordinated in the same fashion. Both metal centers have distorted tricapped trigonal prism geometry, with the Schiff base acting as tridentate ligand. The DPPH· radical scavenging effects of the Schiff base ligand and its Ln(III) complexes were screened. The Ln(III) complexes were significantly more efficient in quenching DPPH· than the free Schiff base ligand. <![CDATA[<b>Chemical and nutritional compositions of flame of forest (Delonix regia) seeds and seed oil</b>]]> The seeds of Delonix regia were investigated for proximate, antinutrient, mineral, amino acid and vitamins compositions while the physicochemical properties, fatty acids and acylglycerols of its oil were also determined. Moisture, crude fibre, ash, crude fat, crude protein, carbohydrate, tannin, oxalate and saponin were 10.12 ± 0.59 %, 14.6 ± 0.44 %, 1.03 ± 0.02 %, 17.16 ± 0.15 %, 8.75 ± 0.04 %, 48.34 %, 1.28 ± 0.02 mg g-1,2.57 ± 0.02 mg g-1, and 2.89 ± 0.02 mg g-1, respectively. The seed contained 1604.0 ± 0.1 mg 100 g-1 Na, 1144.0 ± 0.2 mg 100 g-1 Fe, 920.0 ± 0.6 mg 100 g-1 Zn, 284.0 ± 0.1 mg 100 g-1 Mn, 114.0 ± 0.1 mg 100 g-1 Cu, 9.1 ± 0.1 mg 100 g-1 K, 4.1 ± 0.1 mg 100 g-1 P, 4.0 ± 0.1 mg 100 g-1 Mg, and 1.5 ± 0.1 mg 100 g-1 Ca. The ratios of Na/K and Ca/P were 176.26 and 0.37, respectively. Glutamic acid (147.95 mg g-1 protein) and methionine (10.87 mg g-1 protein) were the most and least abundant amino acids, respectively. The oil was liquid at room temperature, sweet-smelling, amber and had high saponification (203.40 ± 6.72 mg KOH g-1) and iodine (121.03 ± 3.02 g 100 g-1) values. The most abundant fatty acids in the oil followed the order; linoleic acid (C18:2, 37.1 %) > palmitic acid (C16:0,23.90 %) > stearic acid (C18:0,8.20 %) > linolenic (C18:3, 7.6 %) > oleic (C18:1A„ 4.91 %) > ricinoleic acid (C18:1,4.50 %). The ratio of saturated to unsaturated fatty acids was 0.83. Vitamin E (33.68 mg 100 g-1) and triacylglycerols (96.62 %) accounted for the highest contributions to vitamins and acylglycerols, respectively, in the oil. These results showed that the seeds were nutritive and good for both nutrition and industrial uses. <![CDATA[<b>Lead pollution of shooting range soils</b>]]> A total of eight military shooting ranges were used for this study. Soil samples were collected at each of the eight shooting ranges at the berm, target line, 50 and 100 m from berm. In all of the shooting ranges investigated the highest total lead (Pb) concentrations were found in the berm soils. Elevated Pb concentrations of 38 406.87 mg kg-1 were found in the berm soils of TAB shooting range. Most of the shooting range soils contained high levels of Pb in the range above 2000 mg kg-1 far exceeding the United States Environmental Protection Agency (USEPA) critical value of 400 mg kg-1. The predominant weathering products in these shooting ranges were cerussite (PbCO3) and hydrocerussite (Pb3(CO3)2(OH)2). The Synthetic Precipitation Leaching Procedure (SPLP) Pb concentrations exceeded the USEPA 0.015 mg kg-1 critical level of hazardous waste indicating possible contamination of surface and groundwater. <![CDATA[<b>Experimental sensing and density functional theory study of an ionic liquid mediated carbon nanotube modified carbon-paste electrode for electrochemical detection of metronidazole</b>]]> A new highly sensitive sensor was prepared for metronidazole (MNZ) employing single-walled carbon nanotube (SWCNT) and 1-butyl-3-methylimidazolium tetrafluoroborate as ionic liquid (IL). The utilization of IL as a binder in the paste increased the response of the electrode. The performance of the obtained carbon paste electrode was examined by differential pulse voltammetry. Various factors like electrode composition, types of supporting electrolyte, pH, stirring rate, scan rate were studied and optimized. The modified sensor demonstrated high recognition ability and sensitivity for MNZ when compared with the unmodified sensor. Moreover, the sensor also demonstrated good stability and acceptable reproducibility for the determination of MNZ. In the optimum experimental conditions, the current response of the electrochemical sensor studied for metronidazole solution and linearity was obtained in the range of 5.00 X 10-5 to 5.00 X 10-3 mg L-1, with a detection limit of 1.238 X 10-5 mg L-1. The method was successfully used for the analysis of MNZ in the milk and egg samples with acceptable recoveries of 90.33-108.0 %. In addition, the non-covalent interactions of the metronidazole with the SWCNT were investigated employing the density functional theory (DFT) method. <![CDATA[<b>Effect of benzamide on the corrosion inhibition of mild steel in sulphuric acid</b>]]> The effect of benzamide as a chemical inhibitor on mild steel corrosion in 0.5M H2SO4 was studied at ambient temperature. The experimental work was performed with gravimetric and potentiostatic polarization measurement methods. Potentiostatic polarization measurement was performed with a potentiostat (Autolab PGSTAT 30 ECO CHIMIE) interfaced with a computer for data acquisition and analysis. The benzamide inhibitor achieved very effective corrosion inhibition of the steel specimens in the H2SO4 test medium. The inhibition performance increased with increasing concentration of the inhibitor. Benzamide's best performance was achieved with the 4 g 200 mL-1 H2SO4 concentration and closely followed by the 3 g 200 mL-1 of the H2SO4.In 0.5 M H2SO4, the 4 g and 3 g 200 mL-1 H2SO4 gave the optimal performance with weight loss of 2.99 g at 480 h of the experiment, respectively. The corrosion rate for 4 g's was 6.4 mm yr-1. The experiment also achieved polarization resistance values of 3.98 and 2.37E + 01Ω; corrosion rate, CR, of 7.48E + 00and1.26E + 01 mm yr¹ and current density (Icorr) values of 6.45E-04 and 1.08E - 03 A cm-2, respectively. The corrosion inhibition efficiency values are, respectively, 60 and 70 % for both 3 g and 4 g 200 mL-1 H2SO4 concentrations at 48 h. Results of ba and bc indicated a mixed type inhibitor. Benzamide adsorption on the steel's surface obeys the Freundlich adsorption isotherm. <![CDATA[<b>Novel silver-doped NiTiO<sub>3</sub>: auto-combustion synthesis, characterization and photovoltaic measurements</b>]]> Novel silver-doped nickel titanate nanoparticles (Ag-NiTiO3) were successfully prepared via a sol-gel method in the presence of stearyl alcohol as the capping agent and solvent. The formation of pure crystallized nickel titanate and silver-doped nickel titanate was occurred when the precursor was heat-treated at 700 °C in air for 150 and 60 min, respectively. The structural, morphological, and optical properties of obtained products were characterized by techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Energy dispersive X-ray microanalysis (EDX), ultraviolet-visible (UV-vis), and scanning electron microscopy (SEM). The magnetic property of the prepared Ag-NiTiO3 nanoparticles was also investigated with vibrating sample magnetometer (VSM). To fabricate a FTO/TiO2/Ag-NiTiO3/Pt-FTO solar cell, Ag-NiTiO3 film was directly deposited on top of the TiO2 prepared by electrophoresis deposition method. Furthermore, solar cell result indicates that an inexpensive solar cell could be developed by the synthesized Ag-NiTiO3 nanoparticles. <![CDATA[<b>Synthesis, spectroscopic and DFT Characterization of 4<em>β</em>-(4-<em>tert</em>-Butylphenoxy)phthalocyanine positional isomers for non-linear optical absorption</b>]]> In this work the synthesis, spectral characterization and non-linear optical properties of metal-free 4y/-(4-ferf-butyl-phenoxy)phthalocyanine isomers are described and compared to the previously reported alpha derivative. The second-order nonlinear optical properties of the phthalocyanine isomers were investigated using the Z-scan technique and compared to the theoretical data obtained from density functional theory (DFT) and time dependent density functional theory (TD-DFT) calculations. Z-scan results indicated strong non-linear behaviour, revealing reverse saturable absorption (RSA) profiles for all four isomers. The experimental Bexp values showed the following trend: C4h (9.31 X 10(10) mMW¹)>D2h (7.89 X 10(10) mMW-1)>Cs (7.32 X 10-10 mMW-1)>C2v (1.77 X 10-10 mMW-1). These results were similar to that obtained with the 4a-(4-to-f-butylphenoxy)phthalo-cyanines as the C2v and Cs isomers were found to have the lowest Bexp values compared to other symmetries. The 4ß-(4-tert-butylphenoxy)phthalocyanine C4h isomer was found to show better non-linear optical properties compared to all other isomers. <![CDATA[<b>ICH guidelines-compliant HPLC-UV method for pharmaceutical quality control and therapeutic drug monitoring of the multi-targeted tyrosine kinase inhibitor pazopanib</b>]]> In this study, an HPLC method with ultraviolet (UV) detection was developed and validated for determination of pazopanib (PAZ), a multi-targeted tyrosine kinase (TK) inhibitor in bulk drug, tablets formulation, and in human plasma. Oxamniquine (OXA) was used as internal standard (IS). The analytical column used for the separation was Nucleosil CN with dimensions (i.d. 250 X 4.6 mm and particle size 5 μπι). The separation was carried out in isocratic mode with mobile phase constituting acetonitrile:100 mM sodium acetate buffer (pH 4.5); 40:60, v/v. The developed method was linear in the concentration range of 2-12 μg mL-1 and had a correlation coefficient (r = 0.9998, n = 6). The limits of detection and quantitation (LOD and LOQ) were 0.27 and 0.82 μg mL-1, respectively. The relative standard deviations for the inter- and intra-assay precisions were below 3.61 % and the accuracy of the method was 96.69-104.15 %. The degradation products were resolved from the intact drug, proving the stability-indicating property of the proposed method. The recovery values were 100.17-103.98 % (± 1.81-4.02) for determination of PAZ in human plasma. The results indicated the versatility of the new method in estimation of PAZ during pharmaceutical quality control (QC) and therapeutic drug monitoring (TDM).