Scielo RSS <![CDATA[Journal of the Southern African Institute of Mining and Metallurgy]]> http://www.scielo.org.za/rss.php?pid=0038-223X20130002&lang=en vol. 113 num. 2 lang. en <![CDATA[SciELO Logo]]> http://www.scielo.org.za/img/en/fbpelogp.gif http://www.scielo.org.za <![CDATA[<b>Change</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-223X2013000200001&lng=en&nrm=iso&tlng=en <![CDATA[<b>The state of the local foundry sector</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-223X2013000200002&lng=en&nrm=iso&tlng=en <![CDATA[<b>The role of alloying elements in bainitic rail steels</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-223X2013000200003&lng=en&nrm=iso&tlng=en The formation of bainite in steel is dependent on the size of the casting, the heat treatment, and the alloying elements. It is difficult to obtain a fully bainitic microstructure in steels during heat treatment because of its close proximity to the martensite (α') reaction. The ferrite (α) and pearlite reactions in steels are also rapid and shield the bainite reaction. Alloying elements therefore need to be added to separate the bainite reaction. Boron (B) and molybdenum (Mo) are key elements added to bainitic steels because of their ability to retard the α reaction. Other elements used in the production of bainitic steels are silicon (Si), chromium (Cr), manganese (Mn), and titanium (Ti). In this paper we investigate the effect of alloying elements on the bainite reaction through the use of dilatometry. Dilatometry is a technique that determines phase transformations in the steel and through which continuous cooling transformation (CCT) curves can then be developed. Some initial results are presented of an ongoing study on the development of bainitic steels for railway wheel applications. <![CDATA[<b>Qualitative and quantitative determination of inclusions in high-carbon steel alloy (Class B) for rail wheel application by SEM/EDS analysis</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-223X2013000200004&lng=en&nrm=iso&tlng=en It is well understood that to develop wagon wheels with higher abrasion resistance, fracture toughness, and fatigue resistance, steels with lower amounts of inclusions need to be used. Clean steels are produced with technologies that minimize the amount of inclusions in the microstructure. The demand for cleaner steels is high, and lowering of non-metallic oxide inclusions and controlling their morphology, composition, and size distribution is vital. Reduction of residual impurity elements such as sulphur, phosphorus, hydrogen, nitrogen, and trace elements is essential in the production of cleaner steel. Material cleanliness is vital for fatigue endurance, since oxide inclusions may act as stress concentrators and initiation points for fatigue cracks. To better understand the relationship between the cleanliness and toughness of the 34-inch cast wagon wheels, two samples of different levels of cleanliness were supplied for investigation. This paper presents the results of metallurgical analysis using scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), and mechanical tests for the pearlitic high-performance cast rail wagon wheel (identified as Class B) that are currently being used. The Charpy V-notch impact test results for the three samples from wagon wheels were compared. With the aid of SEM/EDS analysis system, non-metallic inclusions in these steels were detected, and it was possible to determine the position, size, shape, and composition of each particle. Alumina and manganese sulphide inclusions could be identified as the dominant inclusion types in the investigated samples. Fracture surface analysis of the Charpy specimen with high inclusions indicated that transgranular cleavage was the predominant fracture mode. Fractography of fracture surfaces of Charpy impact test samples also showed improvement of toughness properties on the clean sample. <![CDATA[<b>The effect of the matrix structure on the metal dusting rate in hydrocarbon environments</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-223X2013000200005&lng=en&nrm=iso&tlng=en The paper describes work undertaken to identify the influence of the matrix structure on the metal dusting rate of stainless steel alloys. Specifically, the difference in metal dusting rate between austenitic and ferritic stainless steels of similar chromium contents was investigated. The alloys were exposed to metal dusting conditions and their performance compared by weight loss, optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The specific gas mixture used for all the tests were 18.9% CO-79.1% H2-2% H2O at 650°C. For austenitic stainless steels, Types 304, 321, 316, and 316Ti were compared to two ferritic grades, namely Types 430 and 441. The resistance of the ferritic grades was found to be significantly better than that of the austenitic grades. This was attributed to greater permeability of chromium through the matrix structure to maintain the protective oxide scale. The results will be used in the development of novel alloys to combat metal dusting. <![CDATA[<b>Effect of hot rolling conditions on ridging in 16wt% Cr ferritic stainless steel sheet</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-223X2013000200006&lng=en&nrm=iso&tlng=en The last seven hot rolling passes of the ferritic stainless steel AISI 430 were simulated on a Gleeble-1500D® thermo-mechanical simulator to investigate the effect of temperature, strain rate, and interpass time on the texture. The compression tests were carried out over a wide range of strain rates (0.1 s-1 to 5 s-1) and temperatures (1100°C to 820°C) with different interpass times (2, 10, 20, and 30 seconds). The dynamic recrystallization to dynamic recovery transition temperature was determined from examining the relationship between the mean flow stress and the inverse of the deformation temperature in multi-pass tests. It was found that the texture in the central layer of the compressed sample is a strong recrystallization-type. The through-thickness textural and microstructural banding, to a large extent, were found to be weakened by hot deformation in the two-phase (α + γ) region, as opposed to the single-phase (α) region. <![CDATA[<b>A comparative assessment of Ti-47.5 at.%Al cathodically modified by precious metal addition</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-223X2013000200007&lng=en&nrm=iso&tlng=en Plain and alloyed titanium aluminides of composition Ti-47.5 at.% Al were prepared by melting commercial-purity titanium and aluminium with additions of 1 at.% precious metal. The as-cast alloys were subjected to potentiodynamic scans in 5, 15, and 25 wt% HCl aqueous solutions at room temperature and compared for their abilities to spontaneously passivate. Addition of precious metals resulted in a general improvement of corrosion resistance by increasing the open circuit potential to more noble values. Addition of 1 at.% gold or silver to titanium aluminide did not significantly increase the corrosion potential (e corr) above that of the plain titanium aluminide alloy, indicating that gold and silver are not sufficient cathodic modifiers to improve the corrosion resistance of titanium aluminide in all the solutions tested. However, platinum, palladium, and iridium additions shifted the corrosion potentials to the position of the passive region of plain TiAl for all solution concentrations. This indicated that TiAl alloyed with these platinum group metals would passivate spontaneously by cathodic modification. TiAl alloyed with palladium performed the best in 5 wt% HCl solution with the most positive corrosion potential. In 15 wt% HCl solution, alloys with platinum exhibited the most positive corrosion potentials, while alloying with iridium or palladium revealed more negative corrosion potentials. Thus, palladium alloying led to the best cathodic modification of titanium aluminide in low-concentration HCl solution, whereas platinum and iridium alloying additions resulted in the best cathodic modification of titanium aluminide in high-concentration HCl solutions. <![CDATA[<b>Evaluation of oxine-type ligand coordination to zirconium (IV)</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-223X2013000200008&lng=en&nrm=iso&tlng=en [Zr(C9H6NO)4]-(HCON(CH3)2)-(H2O), where (C9H6NO) = 8-hydroxy quinoline (oxH), was synthesized and characterized. This tetrakis-coordinated zirconium complex crystallized in the triclinic crystal system (PT, Z=2) along with water and N,N'-dimethylformamide (DMF) solvate in the asymmetric unit. The metal atom is surrounded by four N,O-donating bidentate ox-ligands that are arranged around the metal centre to give a square antiprismatic coordination polyhedron with a small distortion towards a dodeca-hedral geometry. Crystal packing is stabilized by intermolecular interactions of adjacent oxine ring systems in neighbouring molecules, as well as hydrogen bonding of the aqua and DMF solvate molecules, linking the molecular entities into a supramol-ecular three-dimensional network. <![CDATA[<b>Effect of dual phase microstructure on the toughness of a Cr-Mo low-alloy plate steel</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-223X2013000200009&lng=en&nrm=iso&tlng=en Quench and tempered Cr-Mo plate steel was found not to contain a fully martensitic structure as a result of either slow slack quenching or insufficient hardenability at the cooling rates used. The resulting microstructure contains bainite in combination with martensite. It is necessary to examine the implications of bainite for the toughness of the final product. Loss of toughness arises primarily from the inter-lath carbides that typically form in upper bainite. An investigation into the effect of upper bainite in a martensitic matrix of a steel grade containing 0.17% C, 0.1% Cr, 0.54% Mo, and 20 ppm B indicated lower toughness than in a fully martensitic structure. <![CDATA[<b>Effect of cold reduction and annealing temperature on texture evolution of AISI 441 ferritic stainless steel</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-223X2013000200010&lng=en&nrm=iso&tlng=en The effect of the amount of cold reduction and annealing temperature on the evolution of the texture of AISI 441 steel is reported. The steel was cold rolled by 62%, 78%, and 82%, followed by isothermal annealing of each sample at 900°C, 950°C, and 1025°C for 3 minutes. The crystallographic texture was determined by Phillips X'Pert PRO MPD texture diffractrometer. Microstructures were characterized using optical microscopy and scanning electron microscopy (SEM). The results show that sample that received 78% cold reduction and annealing at 1025°C presented the highest Rm-value and lowest ΔR-value, which would enhance its deep-drawing capability. In addition, this sample showed the highest intensity of shifted γ-fibre, notably {554}<225&gt; and {334}<483&gt;. It can therefore be concluded that the γ-fibre, which favours deep drawing, is optimal after 78% cold reduction and annealing at 1025°C. <![CDATA[<b>A study of metal dusting corrosion on Fe- and Ni-based alloys</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-223X2013000200011&lng=en&nrm=iso&tlng=en Behaviour studies of metal dusting processes and associated filamentous carbon formation were undertaken on Alloys 600, 601, and 800 using a simulated metal dusting environment of 25CO-70H2-5H2O (vol.%) at 650°C. These samples were studied visually and by optical microscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM-EDX) and X-ray diffraction (XRD). Visual examination and SEM surface observation showed that Alloy 800 suffered metal dusting attack at an early exposure reaction period. The coke deposit amounts increased significantly with reaction time from 168 hours to 336 hours in Alloys 600, 601, and 800. Alloy 800 showed pitting after 168 hours' exposure, and the degree of pitting increased after 336 hours. XRD showed all these alloys had a common austenitic phase, with Alloy 800 also having ferritic metal particles. Alloy 800 after 168 hours' exposure had a complex phase mixture on the surface, consisting of ferritic Fe and austenitic FeNi phases. For coke deposit, there were also Fe3O4, Fe3C and graphitic carbon. The existence of Fe, Ni, and Cr metal particles, and also graphitic carbon in coke deposits, was confirmed by EDX analyses. <![CDATA[<b>Friction Hydro Pillar Process as an alternative repair technology for creep evaluation sites on thick-walled 10CrMo910 creep-resistant steel structures</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-223X2013000200012&lng=en&nrm=iso&tlng=en The removal of a cylindrical core from thick-wall sections for creep analysis by the relatively new Weldcore® process represents a very exciting methodology for obtaining more representative creep damage data from large engineering structures. The cylindrical core that is removed, representing about 60% of the wall thickness, leaves a substantial removal site that needs to be repaired. This paper presents data pertaining to taper Friction Hydro Pillar Processing as an alternative repair technique for filling the core removal site. Process parameters were evaluated with special attention being paid to the effect of downward force on process response variables, weld defects, and mechanical properties of 10CrMo910 steel. Process temperature and torque response as well as total process energy input were also considered. This paper also assesses the static and dynamic performance of this repair technique. The influence of a varying downward force and the occurrence and position of discontinuities were quantified. Downward force was shown to have the most notable effect on weld joint dynamic performance and was found to be related to the process temperatures achieved in close proximity to the weld interface. <![CDATA[<b>Determination of the degree of thermal exposure to the lower head of the Three-Mile Island Unit 2 nuclear reactor using metallography</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-223X2013000200013&lng=en&nrm=iso&tlng=en The accident at Unit No. 2 of the Three Mile Island nuclear reactor (TMI-2) on 28 March 1979 was the worst nuclear accident in US history and crippled the nuclear industry. An international Vessel Investigation Project was formed to assess the integrity of the vessel. However, it was not possible to remove specimens from the lower head until January-March 1990. Fourteen of the fifteen specimens removed by electrical discharge machining were from under the debris pile that accumulated on the lower head due to melting of approximately 19 000 kg (45%) of the core. Specimens were previously cut from the lower head of a cancelled reactor of very similar size and design destined for Midland, Michigan. These specimens were subjected to controlled heating cycles with peak temperatures from 800°C to 1100°C for periods of 1 to 100 minutes. The initial study qualitatively compared the structures in the 15 specimens from TMI-2 to the control specimens from the Midland lower head. The writer used the same specimens and employed microindentation hardness traverses, electron microprobe analysis, and selective etching followed by quantitative metallography (by image analysis) to obtain a far more detailed description of the thermal exposure experienced. <![CDATA[<b>Combining bainite and martensite in steel microstructures for light weight applications</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-223X2013000200014&lng=en&nrm=iso&tlng=en Multiphase microstructures in steel have been intensively studied in the past years, but combining non-equilibrium phases still offers a great potential for further development of these steel grades. Thus, improved combinations of mechanical properties can be obtained with microstructures formed by bainite or martensite, in combination with retained austenite. In particular, microstructures on the basis of carbon-depleted martensite and retained austenite can be produced by the very promising production process named quenching and partitioning (Q&P). Originally, the Q&P process aimed to avoid the formation of bainite during the heat treatment. However, the process does provide the possibility for (carbide-free) bainite formation during the partitioning step, i.e. in the presence of martensite. This article evaluates this approach, considering that the formation of bainite from austenite is strongly influenced by the preceding formation of martensite. Although the accelerating effect of the presence of martensite during bainite formation has been observed, it is not yet fully understood, and experimental and theoretical studies are being performed in order to come to a more effective exploitation of these processes for the formation of multiphase microstructures. <![CDATA[<b>Carbon corrosion of alloys at high temperature</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-223X2013000200015&lng=en&nrm=iso&tlng=en Alloys used at high temperature must resist both creep and corrosion. Design for corrosion resistance is based on the formation of a slow-growing, protective oxide scale by selective oxidation of an appropriate alloy component, usually chromium or aluminium. A successful scale will exclude other corrodents, notably carbon, which can otherwise cause extremely rapid corrosion at high temperatures. Selective oxidation of an alloy component necessarily lowers the concentration of that metal in the alloy subsurface region. Under thermal cycling conditions, mechanical damage to the scale leads to renewed oxide growth and accelerated alloy depletion. Eventually, a point is reached where diffusion of a corrodent into the alloy becomes competitive with the outward diffusion of alloy metal to repair the protective scale. Two examples of alloy failure by carbon attack are considered. In the steam cracking (pyrolysis) process, centrifugally cast tubes of heat-resisting alloy are exposed to a gas stream of hydrocarbon and steam, at a carbon activity of unity. Formation and repair of the surface chromia scale causes alloy depletion, Kirkendall void formation, and subsequent internal precipitation of chromium-rich carbides. Their formation makes chromia scale formation much more difficult, and generates internal stress. Eventually, the tubes fail by creep rupture. In other processes (e.g. steam reforming, heat treatment), synthesis gases are supersaturated with carbon at intermediate temperatures. Once the alloy's protective scale is breached, carbon attacks the depleted substrate. In the case of ferritic alloys, it forms a surface scale of Fe3C. As this scale thickens, the supersaturated carbon precipitates as graphite within its outer regions. The resulting volume expansion causes disintegration of the cementite in a process known as metal dusting. In the case of austenitic alloys, no metal carbide is formed. Instead, carbon dissolves in the depleted metal to diffuse inward and precipitate as graphite within the metal matrix. Again, volume expansion causes disintegration of the alloy, and metal dusting results. Dusting occurs at an extraordinarily rapid rate, and leads to failure by section loss or even penetration. <![CDATA[<b>Metallurgy of high-carbon steels for railroad applications</b>]]> http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-223X2013000200016&lng=en&nrm=iso&tlng=en This manuscript focuses on the design and development of steels for the railroad industry and methods of testing them. Here are summarized the results of research focusing on alloy development and design, with particular focus on advanced rails and wheels. The high-performance steels are characterized for their mechanical and service characteristics. The relationship between properties and cleanliness is discussed and compared to the regular railroad steel. Some of the tests presented are standard tests that are complemented with the nonstandard test recommended by the Association of American Railroads (AAR) and recommended modifications of this. The paper presents the results of metallurgical analysis, mechanical, and residual stress tests. The laboratory methods include microstructure, residual stresses, tensile, hardness, fracture toughness, and microcleanliness tests.