Scielo RSS <![CDATA[Journal of the Southern African Institute of Mining and Metallurgy]]> vol. 112 num. 8 lang. en <![CDATA[SciELO Logo]]> <![CDATA[<b>International Rock Mechanics Symposium</b>]]> <![CDATA[<b>Spotlight </b>: <b>Southern Hemisphere International Rock Mechanics Symposium (SHIRMS 2012)</b>]]> <![CDATA[<b>Partnership puts SA's research on global stage</b>]]> <![CDATA[<b>Numerical simulation of shear fracture evolution in laboratory-scale samples</b>]]> This investigation aimed to simulate the experiments performed by Nic Gay (Gay, N.C. 1976. Fracture growth around openings in large blocks of rock subjected to uniaxial and biaxial compression. International Journal of Rock Mechanics and Minining Sciences and Geomechical Abstracts, vol. 13. pp. 231-243) on fracture growth around openings in blocks of rock subjected to uniaxial and biaxial compression, using the Elfen discrete element code. The results of the physical experiments indicated a number of trends that were successfully replicated in the numerical simulations, including crushing ahead of the face, the formation of a sub-vertical tensile fracture at centre-span, the formation of groups of fractures originating from the crushed face zone, the formation of large corner-to-corner fractures which precede sample failure, and linking of slot corner and sample corner fractures leading to sample failure. In addition, other features were apparent that were not reported by Gay. It is believed that these took the form of conjugate shear fractures (as reported by Gay in a previous paper) and other features that may have been altered or inhibited by the presence of pre-existing structure in the physical samples. It was found that the samples, though nominally made up of the same rock type, must have had significantly differing properties. The presence of preexisting structures may have contributed to this discrepancy. Strain measurements from the physical experiments were reasonably well matched, except where the gauge lay directly in the path of advancing fractures. <![CDATA[<b>Some pitfalls and misuses of rock mass classification systems for mine design</b>]]> Rock mass classification systems are extensively used in rock engineering design work, and mine design is no exception. Among the systems most widely used for mining-related design work are the NGI Q-system (Barton et al., 1974), the RMR system (Bieniawski, 1976), the MRMR system (Laubscher and Taylor, 1976) and, more recently, the GSI system (Hoek et al., 1998). Classifying the rock mass is widely seen as being the fieldwork required to characterize the rock mass and enable the application of empirical design methods associated with the different classification systems. This paper argues that it is fundamentally important to recognize the distinction between rock mass characterization and rock mass classification. These two processes should, in most cases, be separated from each other. Rock mass characterization should be used to determine the intrinsic properties of the rock mass independently of the application; i.e. independent from the infrastructure to be designed, the size, shape, and orientation of the excavation(s) or pillar(s), etc. Rock mass characterization should also be compatible with most classification systems and empirical design methods to be used. Rock mass characterization is the background fieldwork required to perform rock mass classification and/or engineering design work. Rock mass classification is the subsequent step to the characterization, and an integral part of the design process. Parameters that vary according to the design, such as the relative orientation of geological structures compared to the opening or the mine-induced stresses, should be calculated as part of the rock mass classification and design process, rather than during the rock mass characterization process. The failure to distinguish between rock mass characterization and rock mass classification can lead to major design errors and poor results <![CDATA[<b>A philosophical view on the testing of rock support for rockburst conditions</b>]]> Physical testing of rock support for rockbursting conditions has been carried out for over 40 years. A review of this testing shows that it has been mostly component-based, rather than actually testing support systems. Further, it is concluded that none of the testing is truly representative of rockburst loading in a similitude sense. Similitude conditions are not achievable, mainly because the real conditions in a rockburst event, such as seismic source location and magnitude, wave frequencies, amplitudes, and interactions, are not all known. Because such information is not available, and because the results of all testing carried out to date have not been able to define, for support design purposes, the capacity of support systems, ongoing physical testing of rockburst support systems is essential. It is essential that the test should simulate, or actually take place in, a supported rock excavation. A rock support system is a combination of individual support components that work together to retain and contain the rock. In doing this, the components are subjected to loading by the rock and to interactive loading between one component and another. It is necessary to prove the capacity of such rockburst support systems by subjecting them to severe loading, as in direct blasting. The direct blasting approach, pioneered more than 40 years ago, probably still provides the greatest validity as a significant test of rockburst support capabilities, even though it does not simulate a rockburst. Direct blast testing of rockburst support systems in a surface environment, such as in a quarry or on exposed rock cutting surfaces, could represent a practical development of the approach, facilitating the execution and monitoring of tests. <![CDATA[<b>Simulation of time-dependent crush pillar behaviour in tabular platinum mines</b>]]> It has been established that significant time-dependent stope convergence may occur over time periods of hours and days in certain hard-rock gold and platinum mines. The source of this time-dependent behaviour appears to be associated with both preexisting discontinuities and with mining-induced fractures that form near the stope face. These induced fractures may be associated with blasting processes and may also be formed in response to high stress concentrations in the unmined regions immediately ahead of the stope face. In shallower platinum mining operations, time-dependent behaviour is, however, observed to be much less marked unless some form of specific mining-induced fracturing occurs. One particular case of considerable interest is the time-dependent behaviour that is found to be associated with the formation and deployment of crush pillars. The purpose of the paper is to present a simple limit-equilibrium computational model of this behaviour that is sensitive to both the formation sequence and the size of planned crush pillars in a mine layout. This model provides a useful means to optimize the sizing of crush pillars, and at the same time may be used to identify potentially hazardous circumstances in which pillars may not crush in a stable manner. <![CDATA[<b>Improved understanding of explosive-rock interactions using the hybrid stress blasting model</b>]]> Since 2001, the Hybrid Stress Blast Model (HSBM) project members have developed a software suite to model the complete blasting process from non-ideal detonation to muck pile formation. To preserve the physics and improve solution time, the breakage engine uses a combination of analytical models and 2D axisymmetric finite differences to model near-field crushing, coupled to 3D discrete lattice fracturing and distinct element numerical methods to model throw and muck pile development. The model has been validated by comparison with laboratory and field tests in kimberlite. Multiple blasthole simulations are used to demonstrate how changes to blasting parameters can influence downstream efficiencies. Case studies of wall control blasting show that the presplit design must balance the two opposing effects of increased damage with increased charge and decreasing attenuation of the seismic waves with decreasing charge. Modelling of decoupled explosives needs further development. Reducing the charge towards the back of the trim blast results in a much more significant decrease in back damage than altering the timing. The model demonstrates how separation along the weaker planes in a jointed rock can coarsen the fragmentation, leading to inefficient beneficiation, and extends the damage to a distance of at least twice the burden behind from the blasthole, severely compromising the wall stability. <![CDATA[<b>Origins of some fractures around tabular stopes in deep South African mines</b>]]> The geometry and morphology of a set of low-angle fractures around a stope in a deep Witwatersrand gold mine are explained in terms of extension fractures forming under variable conditions of stress. Primary extension fractures (E1) form some distance ahead of an advancing stope along the σι, σ2 plane. With stope advance, a couple of these fractures end up in a stress regime conducive to transpressional shear and a secondary set of extension fractures (E2) is formed at a high angle to the primary fractures. i.e. at a low angle to the stope. As the E2 fractures are undermined, they migrate into a stress regime of transtensional shear and a third set of extension fractures (E3) may develop between E2 fractures. These have sigmoidal shapes, being parallel to the E2 fractures at the E2 discontinuity where σ3 is negative, and curved through the un-fractured rock between E2 fractures where σ3 is positive at the instant of fracturing. The fractures all display fractographic features characteristic of dynamic extension failure with striae indicative of the direction of rupture propagation and the local, instantaneous orientation of σ1. <![CDATA[<b>Linear elastic numerical modelling for failure prediction-an assesment</b>]]> A partial shaft pillar extraction project was embarked on at a mine in the West Wits mining region in South Africa. Prior to the extraction, a rock engineering assessment was conducted with the main objective being to establish which areas of the shaft pillar could be extracted without unduly affecting the stability of major infrastructure within the shaft pillar. Standard numerical modelling methods were used to conduct this assessment and several areas were identified for extraction. However, during the extraction process, it was found that the infrastructure was affected more than was originally predicted by linear elastic modelling. In addition to this, several large events resulted in far more large aftershocks than would normally be predicted. In order to gain an understanding of this phenomenon, seismic data was integrated with numerical modelling as follows: > The seismic data in the form of displacements was integrated in 3D space within the model to assess the effect of static stress changes associated with seismic activity > Data from large events was integrated onto specific structures, where displacements associated with large events were integrated onto the plane of structure in question. This paper describes the methodology and results obtained from each of the above processes and include insights into the mining process that were previously unfathomable using standard linear elastic numerical modelling. The way forward for this rock engineering assessment of partial shaft pillar extraction is also discussed. <![CDATA[<b>Trial of the BX conical-ended borehole overcoring stress measurement technique</b>]]> Information on rock stress is important for safe mining in seismically active ground. On a major gold mine, a few tens of crews are continuously conducting geological drilling with small pneumatic machines. However, stress measurements are not often carried out in South African deep-level gold mines. One of the reasons is the drilling diameter that overcoring requires, which is much larger than the diameters used in regular geological drilling, e.g. Boart Longyear Metre Eater, which drills AQ or BQ holes. Larger diameter holes result in slower drilling advance, more load in transportation and handling at sites, and higher cost. In order to enable overcoring in BX size (60 mm diameter), we modified the compact conical-ended borehole overcoring (CCBO) technique that has been suggested by International Society for Rock Mechanics (ISRM) and was originally designed for NX drilling (76 mm diameter). With a single overcoring, the 3-D stress tensor can be determined. We tested this modified method at a depth of about 3 km at Moab Khotsong mine in South Africa. We worked with drilling crew who usually work at geological drilling with the Metre Eater. In January 2011, we tried using regular geological drilling tools (a sequence of a normal BX bit, reamer, and rod) without success. In August and September 2011, introducing stabilizers and thin BX bits, we succeeded. We could complete a cycle of procedures necessary for an overcoring, including shaping the borehole-end conically, glueing a 16-element strain cell, and overcoring, within 2.5 hours. Only 10 cm overcoring is needed, which increases the chance of successful overcoring in heavily fractured conditions. This modified method is suitable for up-dip holes to depths of 10-15 m from tunnels, and has the potential to be widely used at the initial stage of geological exploration drilling at many localities. <![CDATA[<b>The development of a remote-controlled highwall rockbroom-a world first for the open-pit mining industry</b>]]> Jointed rock slopes are generally stable, as there is no freedom of movement for blocks of rock. In an open- pit mining environment, blasting opens up space into which blocks of rock can fail, resulting in the common occurrence of slope failure. Prior to the blasting of a trim pattern, the immediate highwall is scaled, where loose rock material is removed by means of a mechanical scaler. As mining of the pit progresses, the height of the scaled highwall from the pit floor progressively increases. These highwalls are never scaled again for the remainder of the pit life, and time-dependant deterioration contributes to these highwalls becoming subject to rockfall and, sometimes, slope failure. This paper documents the development of a South African innovation, a remote-controlled mechanical highwall scaler, a world first for the mining industry. The scaler will enable open-pit highwalls to be scaled from crest to toe whenever the need arises. It will reduce the risk associated with highwalls and deliver on the Anglo American promise of producing safe, profitable platinum.