Scielo RSS <![CDATA[Onderstepoort Journal of Veterinary Research]]> vol. 81 num. 2 lang. en <![CDATA[SciELO Logo]]> <![CDATA[<b>The changing landscape for health research in Africa: The focus of the Southern African Centre for Infectious Diseases and Surveillance</b>]]> <![CDATA[<b>Surveillance and diagnosis of plague and anthrax in Tanzania and Zambia</b>]]> <![CDATA[<b>Screening for foot-and-mouth disease virus in livestock-wildlife interface areas of Tanzania</b>]]> <![CDATA[<b>Full genome sequencing to study the evolutionary characteristics of foot-and-mouth disease virus in southern Africa</b>]]> <![CDATA[<b>The changing landscape of the molecular epidemiology of foot-and-mouth disease virus in southern Africa north of Limpopo and east Africa</b>]]> <![CDATA[<b>Spatial and temporal distribution of foot-and-mouth disease virus in the eastern zone of Tanzania</b>]]> <![CDATA[<b>Typing and serological surveillance of FMDV in the African buffaloes in Zambia</b>]]> <![CDATA[<b>Molecular biological characteristics of foot-and-mouth disease virus in the African buffalo in southern Africa</b>]]> <![CDATA[<b>Prevalence of bovine tuberculosis in a dairy cattle farm and a research farm in Ghana</b>]]> The aim of the study was to estimate the prevalence of bovine tuberculosis (BTB) and to identify the mycobacterial species causing BTB in a dairy farm and research farm. Six hundred and eighty-five cattle were screened for BTB by using the Comparative intradermal tuberculin test (CTT). Positive reactors were slaughtered and carcasses were taken for isolation of mycobacterial species. This was followed by speciation of isolates using both standard conventional and molecular assays. Seventeen of the cattle were positive by CTT, giving a crude BTB prevalence of 2.48% among cattle from the two farms. Six of the 17 samples (35.30%) yielded positive acid-fast bacilli cultures and three of the isolates were identified as Mycobacterium tuberculosis complex (MTBC), which were sub-divided into two Mycobacterium tuberculosis sensu scrito (Mtb) and one Mycobacterium africanum; the remaining three were Mycobacterium other than tuberculoisis (MOTT). Spoligotyping further characterised the two Mtb isolates as Ghana (spoligotype Data Base 4 number 53) and Latin American Mediterranean (LAM), whilst spoligotyping and Single Nucleotide Polymorphism (SNP) analysis typed the M. africanum as West African 1. Microseq 500 analysis identified two of the MOTT as Mycobacterium flavescens and Mycobacterium Moriokaense respectively, whilst the remaining one could not be identified. This study observed the prevalence of bovine TB among cattle from two farms in Ghana as 2.48% and confirms the public health importance of M. africanum as a pathogen in Ghana. <![CDATA[<b>Epidemiological study of Rift Valley fever virus in Kigoma, Tanzania</b>]]> Rift Valley fever virus (RVFV) is an acute, zoonotic viral disease caused by a Phlebovirus, which belongs to the Bunyaviridae family. Among livestock, outbreaks of the disease are economically devastating. They are often characterised by large, sweeping abortion storms and have significant mortality in adult livestock. The aim of the current study was to investigate RVFV infection in the Kigoma region, which is nestled under the hills of the western arm of the Great Rift Valley on the edge of Lake Tanganyika, Tanzania. A region-wide serosurvey was conducted on non-vaccinated small ruminants (sheep and goats, n = 411). Sera samples were tested for the presence of anti-RVFV antibodies and viral antigen, using commercial enzyme-linked immunosorbent assay and reverse transcriptase polymerase chain reaction, respectively. The overall past infections were detected in 22 of the 411 animals, 5.4% (Confidence Interval (CI) 95% = 3.5% - 8.1%). The Kigoma rural area recorded the higher seroprevalence of 12.0% (CI 95% = 7.3% - 18.3%; p < 0.0001), followed by Kibondo at 2.3% (CI 95% = 0.5% - 6.5%; p &gt; 0.05) and the Kasulu district at 0.8% (CI 95% = 0.0% - 4.2%; p &gt; 0.05). The prevalence was 12.5% and 4.7% for sheep and goats, respectively. Reverse transcriptase polymerase chain reaction results indicated that only eight samples were found to be positive (n = 63). This study has confirmed, for the first time, the presence of the RVFV in the Kigoma region four years after the 2007 epizootic in Tanzania. The study further suggests that the virus activity exists during the inter-epizootic period, even in regions with no history of RVFV. <![CDATA[<b>Serosurveillance of foot-and-mouth disease virus in selected livestock-wildlife interface areas of Tanzania</b>]]> Foot-and-mouth disease (FMD) is caused by a virus of the genus Aphthorvirus of the family Picornaviridae. There is great scientific need for determining the transmission dynamics of FMD virus (FMDV) by drawing more attention to the livestock-wildlife interface areas. A variety of literature suggests that buffalo could serve as reservoir of FMDV in wildlife and cattle. However, many FMDV research studies conducted on experimentally infected cattle as carriers and groups of animal highly susceptible to FMDV (i.e. bovine calves) have shown lower chances of transmission of the virus between carriers and the susceptible groups. These findings underscore the importance of continued research on the role played by carrier animals on FMDV transmission dynamics under natural conditions. The aim of this research study was to determine FMDV infection status among buffalo and cattle herds in selected livestock-wildlife interface areas. The sampled areas included Mikumi, Mkomazi and Ruaha national parks, where a total of 330 buffalo and bovine sera samples were collected. Laboratory analysis of the samples was done through the NSP ELISA technique using the PrioCHECK® FMDV NS Kit for detection of antibodies directed against 3ABC non-structural proteins and confirming natural infections. Results showed that 76.3% of tested sera samples were positive for FMDV. However, serotyping of NSP ELISA seroreactors with LPBE is yet to be done. This information is important for further epidemiological studies towards developing effective FMD control strategies. <![CDATA[<b>The risk factors for human cysticercosis in Mbulu District, Tanzania</b>]]> The objective of this study was to explore the reasons for the persistence of human cysticercosis (HCC) transmission in Mbulu District, northern Tanzania. The study was carried out in 25 villages, whereby five major risks were identified. The risks were indiscriminate defaecation and improper use of toilets; a free-range system of keeping pigs; indiscriminate or unregulated slaughtering and inadequate meat hygiene and inspection; consumption of undercooked and porcine cysticerci infected pork; and social structure and roles. All of the identified risks were backed up by the immanent lifestyles of the community involved. These findings are important for the development of intervention strategies in the study area. <![CDATA[<b>The quest for One Health: Human Resource training aspects</b>]]> Appropriately trained Human Resources for Health (HRH) are key inputs into One Health. '... more than 50% of all infectious diseases of humans originate from animals and that, of the emerging diseases about 75% could be traced back to animal origin' (Rweyemamu et al. 2006). A comprehensive understanding of the social determinants of health, through an appropriate training model for HRH, is a key input. This study aimed to explore if human and veterinary medical schools were using such a model or providing time for this model in their curricula. Specific objectives were to: determine the time that human and veterinary medical schools' curricula provide for subjects or courses related to the social determinants of health; analyse the curricula contents to establish how they relate to the social determinants of health; and explore how a bio-medical model may influence the graduates' understanding and practice of One Health. A review of human and veterinary graduate-level medical schools' curricula in East Africa was performed in April 2013 and May 2013. The findings were: in the curricula, SDH contents for knowledge enhancement about One Health are minimal and that teaching is Germ Theory model-driven and partisan. Out of the total training time for physicians and veterinarians, less than 10% was provided for the social determinants of health-related courses. In conclusion, the curricula and training times provided are inadequate for graduates to fully understand the social determinants of health and their role in One Health. Furthermore, the Germ Theory model that has been adopted addresses secondary causes and is inappropriate. There is a need for more in-depth model. This article suggests that a vicious cycle of ill-health model must be taught. <![CDATA[<b>Investigation of foot-and-mouth disease outbreaks in the Mbala and Kazungula districts of Zambia</b>]]> Foot-and-mouth disease (FMD) is an acute, highly contagious viral infection of domestic and wild cloven-hoofed animals. It is known to be endemic in Zambia, with periodic outbreaks occurring in different geographical areas of the country. This study was conducted to investigate the presence of FMD virus (FMDV) in reported FMD-suspected cases in cattle from the Kazungula and Mbala districts of Zambia. Sixty epithelial tissues or oesophageal- pharyngeal (OP) scrapings (probang samples) were collected from Mbala (n = 51) and Kazungula (n = 9) and examined for FMDV. The FMDV viral RNA and serotypes were examined by realtime reverse transcription polymerase chain reaction (qRT-PCR) and antigen Enzyme- linked immunosorbent assay (ELISA), respectively. Twenty-two samples (36.7%) were positive for the FMDV genome by qRT-PCR with Cycle threshold (Ct) values ranging from 13 to 31. The FMDV-positive samples from epithelial tissues showed relatively higher Ct values compared to those obtained from OP scrapings, irrespective of geographical location. Forty percent (40%; n = 4) of epithelial tissues from Mbala were serotyped into SAT 2 serotype by antigen ELISA. Kazungula samples were serotyped into SAT 1. These findings indicated that Mbala and Kazungula districts had FMD outbreaks in 2012 that were ascribed to at least FMDV serotype SAT 2 and SAT 1 field strains. Furthermore, regular interaction between buffalos from the Mosi-o Tunya Park and domestic animals from surrounding areas could contribute to the occurrence of regular FMD outbreaks in Kazungula, whilst the uncontrolled animal movements across borders between Mbala and Nsumbawanga could be responsible for disease outbreaks in Mbala. In-depth molecular biological studies, including sequencing and phylogeny of the viruses, should be conducted to elucidate the complex epidemiology of FMD in Zambia, thereby providing valuable information needed for the rational control strategy of FMD in Zambia and neighbouring countries. <![CDATA[<b>Spatial and temporal distribution of foot-and-mouth disease virus in the lake zone of Tanzania</b>]]> This study was conducted to determine the spatiotemporal distribution of foot-and-mouth disease (FMD) virus (FMDV) serotypes and evaluate the awareness of livestock keepers about FMD in Tanzania. An observational prospective study involving serological analysis, FMDV antigen detection and questionnaire survey was carried out in the lake zone of Tanzania. Seroprevalence of antibodies to the nonstructural protein 3ABC of FMDV and serotype- specific antigen detection were investigated by using SVANOVIR® FMDV 3ABC-Ab ELISA and indirect-sandwich ELISA (sELISA), respectively, whilst a structured questionnaire was used to evaluate the awareness of livestock keepers about FMD. During the period of 2010-2011, both serum and tissue (foot-and-mouth epithelia) samples were collected from cattle suspected of FMD in 13 districts of the four regions of the lake zone. A total of 107 (80.5%) out of 133 tested serum samples were seropositive to nonstructural protein 3ABC, with at least one sample being positive from all 10 districts screened. Fifteen (53.6%) out of 28 tissue epithelial samples collected from FMD cases in eight districts during the course of this study were positive to serotype O FMDV antigen. Of these eight districts, serotype O FMDV antigens were detected from seven districts and no other serotypes were recovered from animal samples screened. Questionnaire surveys in six districts indicated that livestock keepers in the lake zone were aware of the clinical manifestations (26/29 = 90.0%) and economic impact (23/29 = 79.0%) of FMD in the region. The questionnaire data showed that FMD outbreaks often occurred after rainy seasons (22/29 = 75.9%), with the highest peaks predominantly occurring just after the long rains in May and June, and at the end of the short rains in November and December of each year. The spatial distribution of the FMD cases suggested that serotype O virus exposure was the only widespread cause of the 2010-2011 outbreaks in the lake zone. <![CDATA[<b>The business case for One Health</b>]]> This article outlines a pathway to develop the business case for One Health. It describes the origin and development of One Health and then identifies five potential areas where One Health can add value and reduce costs. These are: (1) sharing health resources between the medical and veterinary sectors; (2) controlling zoonoses in animal reservoirs; (3) early detection and response to emerging diseases; (4) prevention of pandemics; and (5) generating insights and adding value to health research and development. Examples are given for each category along with preliminary estimates of the potential savings from adopting the One Health approach. The literature reviewed suggests that one dollar invested in One Health can generate five dollars worth of benefits and a global investment of US$25 billion over 10 years could generate benefits worth at least US$125 billion. Conservation implications: the time has come to make the bigger case for massive investment in One Health in order to transform the management of neglected and emerging zoonoses and to save the lives of millions of people and hundreds of millions of animals whose production supports and nourishes billions of impoverished people per annum. <![CDATA[<b>The benefits of 'One Health' for pastoralists in Africa</b>]]> 'One health' is particularly suited to serve mobile pastoralists. Dinka pastoralists in Sudan inspired Calvin Schwabe to coin the term 'one medicine', indicating that there is no difference in paradigm between human and veterinary medicine. Our contemporary definition of 'one health' is any added value in terms of improved health of humans and animals or financial savings or environmental services resulting from a closer cooperation of human and animal health sectors. Here we present a summary of 'one health' studies with mobile pastoralists in Africa which were done in research partnership, demonstrating such an added value. Initial joint human and animal health studies revealed higher livestock vaccination coverage than in the pastoralist community, leading to joint animal and human vaccination intervention studies which demonstrated a better access to primary health care services for pastoralists in Chad. Further simultaneous animal and human serological studies showed that camel breeding was associated with human Q-fever seropositivity. In Borana communities in Ethiopia, human cases of Mycobacterium bovis infection could be related to strains isolated from cattle. A challenge remained with regard to how to assess vaccination coverage in mobile populations. With the advent of mobile phones, health and demographic surveillance could be established for mobile pastoralists and their animals. This presents vast possibilities for surveillance and control of human and animal diseases. Pastoralists prefer a 'one health' approach and therefore contribute toward the validation of this concept by showing real added value of the cooperation between human and animal health services. <![CDATA[<b>Rapid, sensitive and effective diagnostic tools for foot-and-mouth disease virus in Africa</b>]]> Speed is paramount in the diagnosis of highly infectious diseases, such as foot-and-mouth disease (FMD), as well as for emerging diseases; however, simplicity is required if a test is to be deployed in the field. Recent developments in molecular biology have enabled the specific detection of FMD virus (FMDV) by reverse-transcription loop-mediated isothermal amplification (RT-LAMP), real-time reverse-transcription polymerase chain reaction (RT-qPCR) and sequencing. RT-LAMP enables amplification of the FMDV RNA-dependent RNA polymerase 3D(pol) gene at 63 °C (in the presence of a primer mixture and both reverse transcriptase and Bst DNA polymerase) for 1 h, whilst RT-qPCR amplifies the same gene in approximately 2 h 30 min. In this study, we compared the sensitivity and effectiveness of RT-LAMP against RT-qPCR for the detection of the FMDV 3D(pol) gene in 179 oesophageal-pharyngeal scraping samples (collected by probang) obtained from clinically healthy cattle and buffalo in Malawi, Mozambique and Tanzania in 2010. The FMDV detection rate was higher with RT-LAMP (30.2%; n = 54) than with RT-qPCR (17.3%; n = 31). All samples positive by RT-qPCR (Cq < 32.0) were also positive for the RT-LAMP assay; and both assays proved to be highly specific for the FMDV target sequence. In addition, the VP1 sequences of 10 viruses isolated from positive samples corresponded to the respective FMDV serotypes and genotypes. Our findings indicate that the performance of RT-LAMP is superior to RT-qPCR. Accordingly, we consider this test to have great potential with regard to the specific detection and surveillance of infectious diseases of humans and animals in resource-compromised developing countries. <![CDATA[<b>The changing landscape of rabies epidemiology and control</b>]]> Over the past 20 years, major progress has been made in our understanding of critical aspects of rabies epidemiology and control. This paper presents results of recent research, highlighting methodological advances that have been applied to burden of disease studies, rabies epidemiological modelling and rabies surveillance. These results contribute new insights and understanding with regard to the epidemiology of rabies and help to counteract misperceptions that currently hamper rabies control efforts in Africa. The conclusion of these analyses is that the elimination of canine rabies in Africa is feasible, even in wildlife-rich areas, through mass vaccination of domestic dogs and without the need for indiscriminate culling to reduce dog population density. Furthermore, the research provides valuable practical insights that support the operational planning and design of dog vaccination campaigns and rabies surveillance measures. <![CDATA[<b>Preliminary investigation on presence of peste des petits ruminants in Dakawa, Mvomero district, Morogoro region, Tanzania</b>]]> Peste des petits ruminants (PPR) is an acute viral disease of small ruminants characterised by the sudden onset of depression, fever, oculonasal discharges, sores in the mouth, foul-smelling diarrhoea and death. For many years, in Africa, the disease was mainly confined to West and Central Africa but it has now spread southwards to previously PPR-free countries including Tanzania, Democratic Republic of Congo and Angola. The disease was first reported in Tanzania in 2008 when it was confined to the Northern Zone districts bordering Kenya. Presence of the disease has also been confirmed in southern Tanzania especially Mtwara region. Recently, a suspected outbreak of PPR in Dakawa area, Mvomero district, Morogoro region was reported. Clinical samples (lungs, intestines, lymph nodes, whole blood and sera) from suspected goats (n = 8) and sheep (n = 1) were submitted to Sokoine University of Agriculture for analysis. Molecular diagnosis by amplification of the nucleoprotein gene and the fusion gene of PPR virus (PPRV) using PPRV specific primers was done. Five goats and the sheep were positive for PPRV after performing RT-PCR. To our knowledge, this is the first report confirming the presence of PPR in the Mvomero district of the Morogoro region, Tanzania. Hence, more efforts should be put in place to prevent the spread of PPR in Tanzania. <![CDATA[<b>Practice of One Health approaches</b>: <b>Bridges and barriers in Tanzania</b>]]> The practice of One Health approaches in human and animal health programmes is influenced by type and scope of bridges for and barriers to partnerships. It was thus essential to evaluate the nature and scope of collaborative arrangements among human, animal and wildlife health experts in dealing with health challenges which demand intersectoral partnership. The nature of collaborative arrangement was assessed, and the respective bridges and barriers over a period of 12 months (July 2011 - June 2012) were identified. The specific objectives were to: (1) determine the proportions of health experts who had collaborated with other experts of disciplines different from theirs, (2) rank the general bridges for and barriers to collaboration according to the views of the health experts, and (3) find the actual bridges for and barriers to collaboration among the health experts interviewed. It was found that 27.0% of animal health officers interviewed had collaborated with medical officers while 12.4% of medical officers interviewed had collaborated with animal health experts. Only 6.7% of the wildlife officers had collaborated with animal health experts. The main bridges for collaboration were instruction by upper level leaders, zoonotic diseases of serious impact and availability of funding. The main barriers to collaboration were lack of knowledge about animal or human health issues, lack of networks for collaboration and lack of plans to collaborate. This situation calls for the need to curb barriers in order to enhance intersectoral collaboration for more effective management of risks attributable to infectious diseases of humans and animals. <![CDATA[<b>The changing landscape of public health in sub-Saharan Africa</b>: <b>Control and prevention of communicable diseases needs rethinking</b>]]> In sub-Saharan Africa, communicable diseases (CDs) are the leading public health problems and major causes of morbidity and mortality. CDs result in significant individual suffering, disrupting daily life, threatening livelihoods and causing one-third of the years lost to illness or death worldwide. This paper aims to analyse the current strategies in the control and prevention of CDs in sub-Saharan Africa and proposes an ecohealth approach in relation to current changing epidemiological profiles. Whilst in recent years the burden of HIV and AIDS, tuberculosis and malaria have helped to mobilise large amounts of funding and expertise to help address them, many CDs, particularly those affecting the poor, have been neglected. People living in rural areas are also likely to be politically marginalised and living in degraded environments. They often lack assets, knowledge and opportunities to gain access to health care or protect themselves from infections. New diseases are also emerging at unprecedented rates and require attention. Many CDs are rooted in environmental and livelihood conditions and mediated by social and individual determinants. It is now increasingly recognised that a much broader, coordinated and multi-sectoral ecohealth approach is required to address CDs in sub-Saharan Africa. An ecohealth approach has been shown to be more robust in public health interventions than the traditional medical approach. The approach helps to generate an understanding of ecosystem factors that influence the emergence and spread of both old and new diseases, considers temporal and spatial dimensions of disease infection and allows systems thinking. In conclusion, establishing intersectoral and multisectoral linkages is important to facilitate joint efforts to address CDs at the national, district and community levels. <![CDATA[<b>Molecular survey for foot-and-mouth disease virus in livestock in Tanzania, 2008-2013</b>]]> Phylogeography data are of paramount importance in studying the molecular epidemiology dynamics of foot-and-mouth disease virus (FMDV). In this study, epithelial samples and oesophageal-pharyngeal fluids were collected from 361 convalescent animals (cattle and buffaloes) in the field throughout Tanzania between 2009 and 2013. The single plex real-time RT-PCR (qRT-PCR) assay for rapid and accurate diagnosis of FMDV employing the Callahan 3DF-2, 3DF-R primers and Callahan 3DP-1 probe were used. Preparation of the samples was performed according to the OIE manual, with a Kenya O serotype obtained from the attenuated vaccine serving as a positive control and samples collected from healthy animals serving as true negatives. The results indicated that 53.49% of samples (n = 176) were positive for FMDV genome by qRT-PCR, with Ct values ranging from 14 to 32. In addition, molecular typing of the FMDV genome positive samples using serotype specific primers revealed the existence of several serotypes: serotype South Africa Territory 1 (SAT1) (34.25%, n = 60), serotype A (68.92%, n = 98), serotype O (59.20%, n = 98) and SAT2 (54.54%, n = 96). The virus protein 1 sequences analysis for 35 samples was performed and the collective results indicated: 54.28% serotype O, 25.71% serotype A, 14.28% serotype SAT1 and 2.85% serotype SAT2. Therefore in this study, both the phylogenetic trees and spatial distribution of serotypes elucidated the phylodynamics of multiple FMDV field strains in Tanzania and neighbouring countries. <![CDATA[<b>Foot and mouth disease in Zambia</b>: <b>Spatial and temporal distributions of outbreaks, assessment of clusters and implications for control</b>]]> Zambia has been experiencing low livestock productivity as well as trade restrictions owing to the occurrence of foot and mouth disease (FMD), but little is known about the epidemiology of the disease in these endemic settings. The fundamental questions relate to the spatio-temporal distribution of FMD cases and what determines their occurrence. A retrospective review of FMD cases in Zambia from 1981 to 2012 was conducted using geographical information systems and the SaTScan software package. Information was collected from peer-reviewed journal articles, conference proceedings, laboratory reports, unpublished scientific reports and grey literature. A space-time permutation probability model using a varying time window of one year was used to scan for areas with high infection rates. The spatial scan statistic detected a significant purely spatial cluster around the Mbala-Isoka area between 2009 and 2012, with secondary clusters in Sesheke-Kazungula in 2007 and 2008, the Kafue flats in 2004 and 2005 and Livingstone in 2012. This study provides evidence of the existence of statistically significant FMD clusters and an increase in occurrence in Zambia between 2004 and 2012. The identified clusters agree with areas known to be at high risk of FMD. The FMD virus transmission dynamics and the heterogeneous variability in risk within these locations may need further investigation. <![CDATA[<b>ADVANZ</b>: <b>Establishing a Pan-African platform for neglected zoonotic disease control through a One Health approach</b>]]> decision makers and empowering stakeholders at local, regional, and international levels towards a coordinated fight against NZDs. ADVANZ is establishing an African platform to share experiences in the prevention and control of NZDs. The platform will compile and package existing knowledge or data on NZDs and generate evidence-based algorithms for improving surveillance and control with the ultimate aim of eliminating and eradicating these diseases. The platform will serve as a forum for African and international stakeholders, as well as existing One Health and NZD networks and harness and consolidate their efforts in the control and prevention of NZDs. The platform had its first meeting in Johannesburg, South Africa in March 2013. <![CDATA[<b>Drivers of disease emergence and spread: Is wildlife to blame?</b>]]> The global focus on wildlife as a major contributor to emerging pathogens and infectious diseases (EIDs) in humans and domestic animals is not based on field, experimental or dedicated research, but mostly on limited surveys of literature, opinion and the assumption that biodiversity harbours pathogens. The perceived and direct impacts of wildlife, from being a reservoir of certain human and livestock pathogens and as a risk to health, are frequently overstated when compared to the Global burden of disease statistics available from WHO, OIE and FAO. However organisms that evolve in wildlife species can and do spill-over into human landscapes and humans and domestic animal population and, where these organisms adapt to surviving and spreading amongst livestock and humans, these emerging infections can have significant consequences. Drivers for the spill-over of pathogens or evolution of organisms from wildlife reservoirs to become pathogens of humans and domestic animals are varied but almost without exception poorly researched. The changing demographics, spatial distribution and movements, associated landscape modifications (especially agricultural) and behavioural changes involving human and domestic animal populations are probably the core drivers of the apparent increasing trend in emergence of new pathogens and infectious diseases over recent decades. <![CDATA[<b>Mobile technologies for disease surveillance in humans and animals</b>]]> A paper-based disease reporting system has been associated with a number of challenges. These include difficulties to submit hard copies of the disease surveillance forms because of poor road infrastructure, weather conditions or challenging terrain, particularly in the developing countries. The system demands re-entry of the data at data processing and analysis points, thus making it prone to introduction of errors during this process. All these challenges contribute to delayed acquisition, processing and response to disease events occurring in remote hard to reach areas. Our study piloted the use of mobile phones in order to transmit near to real-time data from remote districts in Tanzania (Ngorongoro and Ngara), Burundi (Muyinga) and Zambia (Kazungula and Sesheke). Two technologies namely, digital and short messaging services were used to capture and transmit disease event data in the animal and human health sectors in the study areas based on a server-client model. Smart phones running the Android operating system (minimum required version: Android 1.6), and which supported open source application, Epicollect, as well as the Open Data Kit application, were used in the study. These phones allowed collection of geo-tagged data, with the opportunity of including static and moving images related to disease events. The project supported routine disease surveillance systems in the ministries responsible for animal and human health in Burundi, Tanzania and Zambia, as well as data collection for researchers at the Sokoine University of Agriculture, Tanzania. During the project implementation period between 2011 and 2013, a total number of 1651 diseases event-related forms were submitted, which allowed reporters to include GPS coordinates and photographs related to the events captured. It was concluded that the new technology-based surveillance system is useful in providing near to real-time data, with potential for enhancing timely response in rural remote areas of Africa. We recommended adoption of the proven technologies to improve disease surveillance, particularly in the developing countries.