Scielo RSS <![CDATA[Onderstepoort Journal of Veterinary Research]]> vol. 89 num. 1 lang. en <![CDATA[SciELO Logo]]> <![CDATA[<b>Comparing the minimum inhibitory and mutant prevention concentrations of selected antibiotics against animal isolates of <i>Pasteurella multocida</i> and <i>Salmonella typhimurium</i></b>]]> Historically, the use of antibiotics was not well regulated in veterinary medicine. The emergence of antibiotic resistance (ABR) in pathogenic bacteria in human and veterinary medicine has driven the need for greater antibiotic stewardship. The preservation of certain antibiotic classes for use exclusively in humans, especially in cases of multidrug resistance, has highlighted the need for veterinarians to reduce its use and redefine dosage regimens of antibiotics to ensure efficacy and guard against the development of ABR pathogens. The minimum inhibitory concentration (MIC), the lowest concentration of an antibiotic drug that will prevent the growth of a bacterium, is recognised as a method to assist in antibiotic dosage determination. Minimum inhibitory concentrations sometimes fail to deal with first-step mutants in bacterial populations; therefore dosing regimens based solely on MIC can lead to the development of ABR. The mutant prevention concentration (MPC) is the minimum inhibitory antibiotic concentration of the most resistant first-step mutant. Mutant prevention concentration determination as a complementary and sometimes preferable alternative to MIC determination for veterinarians when managing bacterial pathogens. The results of this study focused on livestock pathogens and antibiotics used to treat them, which had a MIC value of 0.25 µg/mL for enrofloxacin against all 27 isolates of Salmonella typhimurium. The MPC values were 0.50 µg/mL, with the exception of five isolates that had MPC values of 4.00 µg/mL. The MPC test yielded 65.52% (18 isolates) Salmonella isolates with florfenicol MICs in the sensitive range, while 11 isolates were in the resistant range. Seventeen isolates (58.62%) of Pasteurella multocida had MIC values in the susceptible range and 41.38% (12 isolates) had an intermediate MIC value. Mutant prevention concentration determinations as done in this study is effective for the antibiotic treatment of bacterial infections and minimising the development of resistance. The MPC method can be used to better control to prevent the development of antibiotic drug resistance used in animals. <![CDATA[<b>Food animals as reservoirs and potential sources of multidrug-resistant diarrheagenic <i>E. coli</i> pathotypes: Focus on intensive pig farming in South Africa</b>]]> BACKGROUND: Diarrheagenic E. coli (DEC) strains are a major cause of diarrheal diseases in both developed and developing countries. Healthy asymptomatic animals may be reservoirs of zoonotic DEC, which may enter the food chain via the weak points in hygiene practices AIM: We investigated the prevalence of DEC along the pig production continuum from farm-to-fork. METHODS: A total of 417 samples were collected from specific points along the pig production system, that is, farm, transport, abattoir and food. E. coli was isolated and enumerated using Colilert. Ten isolates from each Quanti-tray were selected randomly and phenotypically identified using eosin methylene blue agar selective media. Real-time polymerase chain reaction (PCR) was used to confirm the species and to classify them into the various diarrheagenic pathotypes. Antimicrobial susceptibility was determined against a panel of 20 antibiotics using the Kirby-Bauer disk diffusion method and EUCAST guideline. RESULTS: The final sample size consisted of 1044 isolates, of which 45.40% (474/1044) were DEC and 73% (762/1044) were multidrug-resistant. Enteroinvasive E. coli (EIEC) was the most predominant DEC at all the sampling sites. CONCLUSION: The presence of DEC in food animal production environments and food of animal origin could serve as reservoirs for transmitting these bacteria to humans, especially in occupationally exposed workers and via food. Adherence to good hygienic practices along the pig production continuum is essential for mitigating the risk of transmission and infection, and ensuring food safety. <![CDATA[<b>Human and animal fasciolosis: Coprological survey in Narok, Baringo and Kisumu counties, Kenya</b>]]> Fasciolosis is caused by digenean trematodes of the genus Fasciola. The principal definitive hosts are cattle, sheep and goats. Humans are infected as accidental hosts. Fasciolosis is one of the major neglected tropical diseases and is considered an emerging zoonotic infection. This study was aimed at determining the prevalence of human and domestic animal fasciolosis in selected counties in Kenya. Stool samples for Fasciola diagnosis were collected from humans and domestic animals and transported to the laboratory at Egerton University and processed using sedimentation technique and examined for the presence of eggs. A total of 272 human samples collected were all negative for Fasciola eggs. A total of 582 domestic animals (cattle [46.0%], sheep [29.9%] and goats [24.1%]) samples collected had overall prevalence of 30.9% for Fasciola infection. There was no significant differences (p &gt; 0.05) between the prevalence of fasciolosis and origin of the animals, sex and season. There was a significant difference (p < 0.05) between the prevalence of fasciolosis and domestic animals, age and body condition. The prevalence of fasciolosis was high in two irrigation schemes which favour the breeding of intermediate host snail and grazing of animals along the irrigation canals where metacercaria of Fasciola parasites could be present on the vegetation. Although human fasciolosis was not detected in this study, the presence of animal fasciolosis can pose public health risk because of its zoonotic nature. Therefore, it is important to introduce measures which would help to reduce the exposure of animals to Fasciola infection. <![CDATA[<b>Antibody response to Raboral VR-G® oral rabies vaccine in captive and free-ranging black-backed jackals (<i>Canis mesomelas</i>)</b>]]> Rabies is a zoonotic disease that remains endemic in large parts of southern Africa because of its persistence in wildlife and domestic dog vectors. The black-backed jackals (Canis mesomelas) is primarily the wildlife vector responsible for rabies outbreaks in northern parts of South Africa. Two trials were carried out to investigate antibody responses to the oral rabies vaccine Raboral V-RG® in black-backed jackals under captive and free-ranging conditions. In captive jackals 10/12 (83%; 95% confidence interval [CI]: 52% - 98%), seroconverted after single oral vaccination. Nine captive jackals had protective antibody titres (> 0.5 IU/mL) at 4 weeks (median: 2.1 IU/mL; inter quartile range [IQR]: 0.6-5.7) and 10 jackals had at 12 weeks (median: 3.5 IU/mL; IQR: 1.5-8.3) and three maintained antibody titres for up to 48 weeks (median: 3.4 IU/mL; IQR: 2.0-6.3). Four sites were baited with Raboral V-RG® vaccine for wild jackals, using fishmeal polymer and chicken heads. Baits were distributed by hand or from vehicle at three sites in north-eastern South Africa, with an average baiting density of 4.4 baits/km² and at one site in central South Africa, at 0.12 baits/km². This resulted in protective antibody titres in 3/11 jackals (27%; 95% Cl: 6-61) trapped between 3 and 12 months after baiting in north-eastern South Africa, compared with 4/7 jackals (57%; 95% Cl: 18-90) trapped after 3-18 months in central South Africa. This study shows the potential utility of oral rabies vaccination for the control of wildlife-associated rabies in north-eastern and central South Africa, but extensive studies with wider distribution of bait are needed to assess its potential impact on rabies control in wild jackals. <![CDATA[<b>Protective effects of methanolic leaf extracts of <i>Monanthotaxis caffra</i> against aflatoxin B1-induced hepatotoxicity in rats</b>]]> Aflatoxins are potent hepatotoxic and carcinogenic secondary metabolites produced by toxigenic fungi. The present study investigated the protective effect of methanolic leaf extracts of Monanthotaxis caffra (MLEMC) against aflatoxin B1-induced toxicity in male Sprague-Dawley rats. The rats were randomly divided into 6 groups of 8 animals each. Five groups were administered orally for seven days with three different concentrations of MLEMC (100 mg/kg, 200 mg/kg and 300 mg/kg), curcumin (10 mg/kg) or vehicle (25% propylene glycol). The following day, these groups were administered 1 mg/kg b.w. of aflatoxin B1 (AFB1). The experiment was terminated three days after administration of AFB1. Group 6 represented untreated healthy control. Serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, creatinine and liver histopathology were evaluated. Methanolic leaf extracts of M. caffra decreased the levels of aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase and creatinine in the sera of rats as compared with the AFB1 intoxicated group. Co-administration of MLEMC improved the histological characteristics of the hepatocytes in contrast to the AFB1 treated group, which had mild to severe hepatocellular injuries including bile duct proliferation, bile duct hyperplasia, lymphoplasmacytic infiltrate and fibrosis. Extracts of M. caffra were beneficial in mitigating the hepatotoxic effects of AFB1 in rats by reducing the levels of liver enzymes and preventing hepatic injury.