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The performance of the most frequently used flood frequency probability distributions in South Africa 
(Log-Normal, Log Pearson3 and Generalised Extreme Value) were reviewed and all tend to perform poorly 
when lower exceedance probability frequency events are estimated, especially where outliers are present 
in the dataset. This can be attributed to the challenge when analysing very limited ‘samples’ of annual flood 
peak populations, which are an unknown. At present outliers are inadequately ‘managed’ by attempting to 
‘normalise’ the flood peak dataset, which conceals the significance of the observed data. Thus, to adequately 
consider the outliers, this study was undertaken with the aim to improve the current statistical approach by 
developing a more stable and consistent methodology to estimate flood quantiles. The approach followed 
in the development of the new methodology, called IPZA, might be considered as unconventional, given 
that a multiple regression approach was used to accommodate the strongly skewed data, which are often 
associated with annual flood peak series. The main advantages of IPZA are consistency, the simplicity of 
application (only one set of frequency factors for every parameter, regardless of the skewness), the integrated 
handling of outliers and the use of conventional method of moments, thereby eliminating the need to adjust 
any moments. The performance of IPZA exceeded initial expectations. The results are more consistent 
and, by taking outliers into account, appear to be more sensible than existing probability distributions. It is 
recommended that IPZA should be used as a valuable addition to the existing set of decision-making tools 
for hydrologists/engineers performing flood frequency analyses.
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INTRODUCTION

Floods rank among the topmost devasting natural disasters. The 1931 Yangtze (Yangzi) River flood, 
in Southern China, is indisputably still considered the worst natural disaster of the 20th century. The 
flood inundated 180 000 km2 and an estimated 3.7 million people lost their lives (Courtney, 2018) – 
however, one should be aware that figures relating to damages and deaths are estimates and may vary 
from reference to reference. In South Africa (SA) the floods of 1981, 1984, 1987, 1988 and more recently 
2000 immediately come to mind. The flood in the Buffels River in 1981, which inundated the town of 
Laingsburg, caused 90 people to lose their lives and caused damage in excess of 10 million ZAR (1981 
values), was caused by what is popularly referred to as a Black South-Easter weather situation (Roberts 
and Alexander, 1982). Although Domoina in 1984 is commonly referred to as a tropical cyclone, it 
only officially reached the status of a severe tropical storm. Domoina caused widespread flooding in 
northern KwaZulu-Natal (KZN) in SA, Mozambique (Moz) and eSwatini, causing widespread damage 
to road infrastructure and property of more than 100 million ZAR (1984 values) and over 200 reported 
deaths in South Africa alone (Kovács et al., 1985). The main cause of the 1987 floods in the southern 
part of KZN was an intense off-shore cut-off low pressure system. The damage was calculated to have 
been amongst the most devasting that has occurred in SA. Damage to property, agriculture (including 
several hundred farm dams that were breached), communications and infrastructure amounted to 
approximately 400  million ZAR, with 388 reported deaths and 150  000 people left homeless (Van 
Bladeren and Burger, 1989). During two periods in February 2000, tropical weather systems, which 
included the tropical cyclone Eline, making landfall at the Moz coast in the Beira area, resulted in 
extreme rainfall leading to devastating floods. The excessive financial impact of approximately 
1.5 billion ZAR (2000 values) to infrastructure and water services in SA, as well as social impact (at 
least 600 people in Moz lost their lives and hundreds of thousands of people were displaced) was most 
probably the worst experienced in living memory in Southern Africa (Dyson and Van Heerden, 2001).

These extreme events occur in relatively short annual maximum series (AMS) flood peak record 
lengths, which engineers and hydrologists use to perform flood frequency analyses (FFAs). These 
analyses are used to determine design floods for dams and bridges, for example, as well as to determine 
flood lines along rivers, optimal time frames for construction, inundation of vulnerable crops, etc.

In flood hydrology the benefit of having an entire population of AMS of flood peak records, to test 
the AMS sample records against, does not exist. From very short AMS samples, hydrologists have 
to estimate the underlying probability distribution of the AMS population. It is thus of extreme 
importance to constantly strive to improve the tools available to engineers and hydrologists, to 
increase the confidence in FFA.

Existing probability distributions commonly applied in South Africa

The probability distributions most used in SA for FFA are the Log-Normal (LN), Log-Pearson 
Type III (LP3) and the Generalised Extreme Value (GEV) distributions (Alexander, 1990; SANRAL, 
2013; Van der Spuy and Du Plessis, 2022a). Both the LP3 and GEV distributions have provided 
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good results (DWS, 1993–2021) and the practice is to apply both 
and use the one that seems to fit the observed data best. Van der 
Spuy and Du Plessis (2022a) illustrated that all of the distributions 
lack consistency, which is mainly caused by the inability to deal 
properly with outliers in an AMS of flood peak data. They showed 
that, although the GEV proved to be insensitive to low outliers, 
all distributions are susceptible to high outliers. Ball et al. (2019) 
consider outliers as observations that are inconsistent with the 
general trend of the rest of the data. Frost (2019) stated that, 
while there is no strict statistical rule or mathematical definition 
to identify outliers, guidelines exist through which possible 
outliers can be identified. The Zscore (one such guideline) also 
provides a measure to compare relative probabilities associated 
with relative magnitudes of the data. Since nearly  100% of the 
data will be within 3 standard deviations of the mean, data 
with a Z-score higher than 3, or lower than −3, can be outliers 
(Brownlee, 2018; Frost, 2019). Van der Spuy and Du Plessis 
(2022a) expressed the need for a probability distribution which 
will provide more consistent flood frequency estimations. They 
also proposed that the plotting position (PP) approach should 
be improved, especially concerning outliers. Van der Spuy and 
Du Plessis (2022b) developed an alternative PP technique, the 
Z-set PP. The Z-set PP offers an improved and more realistic 
representation of outliers, with a further advantage of being 
less susceptible to different record lengths than the existing PP 
techniques. The Z-set PP was considered as an essential tool to 
the flood frequency analyst to assist in more consistent choices of 
appropriate probability distributions.

Purpose of study

The purpose of this study was to develop a more consistent 
methodology to estimate flood quantiles (discharges with 
specified probabilities of exceedance) that would not be as 
sensitive to outliers as the most frequently used flood frequency 
probability distributions in South Africa. Consequently, the Z-set 
PP formed an integral part in the study.

The sensitivity to outliers of the developed methodology will be 
evaluated against that of the LP3 and GEV.

METHODOLOGY

Statistics were identified, computed from the AMS data at selected 
flow gauging sites (referred to as sites henceforth), which could be 
considered as potential parameters of the ‘underlying probability 

distribution’, in an FFA. The study was performed in three phases 
to find the most appropriate statistics that would be used as 
parameters for a new flood quantile methodology.

Phase 1: Evaluation of statistics as potential independent 
variables

Multiple regression analyses (MRAs) were used to determine 
which of the identified potential statistics have little or no impact 
on the development of a new flood quantile methodology. For the 
MRAs the following variables were identified (detailed in Table 1):

•	 As independent variables – the identified potential statistics 
were considered

•	 As dependent variables – flood peak values, referred to as 
‘observed’ flood peaks (Qobs) at identified annual exceedance 
probabilities (AEPs), were used

Values for Qobs were estimated for the identified AEPs by 
interpolation and extrapolation of the flood frequency relationship 
between the AEPs (applying the Z-set PP) and the observed AMS 
flood peaks (estimated from observed (recorded) stage levels).

In this phase of the study MRAs were conducted for every identified 
AEP to estimate a flood peak (Qest) that could be compared 
graphically, corroborated by the coefficient of determination (R2), 
to the corresponding Qobs, for every flow site.

The identified variables, which did not contribute to improve the 
results in any way, were eliminated.

Phase 2: Identify parameters for flood quantile model

Using an MRA-approach, various clusters (henceforth used in 
referring to combinations of the remaining independent variables) 
were assessed to estimate the dependent variables (Qobs).

Due to the parameters used in most existing probability 
distributions, it was anticipated that a cluster with one of the 
measures of central tendency as integral part, accompanied by the 
SD and g, would result in the most likely solution to the study. 
Consequently, Table 2 depicts examples of clusters that were 
considered and assessed.

For every cluster at every site, MRAs were conducted at all 
selected AEPs to estimate values of Qest. Instead of just graphically 
comparing Qest with the corresponding Qobs, key performance 
indicators (KPIs) were used to rank the relative performance of 
the different clusters. All these KPIs perform differently, mainly 

Table 1. Initial statistic variable list considered for the MRAs

Independent variables Description Comments

Qmax Maximum peak of the AMS (m3/s) *   Indicates excluding largest flood peak
(Qmax) from AMS dataset

*⁰ Indicates excluding both largest flood
peak (Qmax) and smallest flood peak (Qmin) 
from AMS dataset

Qmin Minimum peak of the AMS (m3/s)

Qave, Qave* Average(s) of the AMS (m3/s)

Qmdn, Qmdn* Median(s) of the AMS (m3/s)

Qgmn Geometric mean of the AMS (m3/s)

SD, SD*, SD*⁰ Standard deviation(s) of the AMS (m3/s)

g, g* Skewness statistics of the AMS

kurt, kurt* Kurtosis statistics of the AMS

COV, COV* Coefficient of variation of the AMS

Zmax and Zmin Z-scores of Qmax and Qmin, respectively

Dependent variable Description Comments

Qobs Flood peak(s) corresponding to selected AEPs, estimated 
through interpolation/ extrapolation of observed AMS 
flood peaks, applying the Z-set PP technique

Selected AEPs (in %):
99.5, 99, 95, 90, 80, 70, 60, 50, 40, 30, 20, 10, 5, 
2, 1, 0.5, 0.2, 0.1, 0.03, 0.01, 0.003, 0.001
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related to the magnitude of the values involved – therefore, two 
KPIs were chosen, namely, the mean absolute percentage error 
(MAPE) and the mean absolute error (MAE) depicted in Eq. 1 
and Eq. 2, respectively. The MAE is likely to suggest relatively large 
‘errors’ at lower AEPs (large flood peaks), while the percentage 
difference might be very small; on the other hand, MAPE might 
suggest large percentage ‘errors’ at higher AEPs, while the absolute 
errors (in terms of flood peaks) could be insignificant in relation 
to flood hydrology. Therefore, these tests were considered as 
relative assessments of performance, rather than absolute, for the 
purpose of this study.

In FFA the ‘design flood’ range is of more practical value than for 
the AEP range > 50%. Thus, MAPE and MAE were considered 
more applicable, respectively, for AEP range ≤ 50% and AEP 
range > 50%.
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where:

MAPE = mean absolute percentage error (%)

MAE = mean absolute error (m3/s)

n = sample size = number of AEP values used for AEP≤ 50% and 
AEP range > 50% ranges

Qiobs = observed flood peak related to an AEP at observation ‘i’ 
(m3/s)

Qiest = estimated flood peak related to an AEP at observation ‘i’ 
(m3/s)

From these results the cluster that provided the best fit, on 
average, to the observed AMS flood peaks was used to develop a 
flood quantile model.

Phase 3: Flood quantile model

Wheeler (2022) expressed his concern that many believe the 
first step in data analysis is to check for normality. If the data are 
strongly skewed, as is often the case with the AMS of flood peaks, 
Wheeler explained that it is a “mathematical fact of life” that no 
skewed probability model exists to fit these data. Wheeler (2009) 
also stated that if data are transformed to make them appear to be 
‘more normal’, it is likely to “end up with a beautiful, but completely 
incorrect, analysis”. As a practical alternative, the MRA results of 
the chosen cluster were used to find an empirical solution for the 
flood quantile model. Consequently, the independent variables 
were used as the parameters for the flood quantile model, while the 
regression coefficients, associated with the AEPs, correspond to 
the frequency factors. However, given that the wide range of AEPs 
did not provide sensible independent variables, an associated 
standardised variable was considered. Two standardised variables 
were considered, namely, the standardised variate used for the 
log-normal distribution (WT) and the standardised variate for 

the EV1 distribution (WP). Both are considered to be suitable, but 
the standardised variate WP was chosen, merely because of the 
simplicity of its equation.

WP = −ln(−ln(1−AEP))                                (3)

To estimate continuous frequency factors, at different AEPs 
used in the study, polynomial functions were used. For each 
statistical parameter the regression coefficients, determined for 
every AEP, were considered to be the dependent variables  (y), 
while the associated standard variate WP was considered to be the 
independent variable (x).

The general form of the polynomial function (using WP) is:

KP = am(WP)m + am−1(WP)m−1 + … + a2(WP)2 + a1(WP)1 + a0   (4)

where:

KP = frequency factor

M = denotes the degree of the polynomial (determined by 
optimum correlation coefficient)

am = coefficient of the mth degree term

The general form of the flood quantile model can be written as:

QAEP = KAEP−S1 · S1 + KAEP−S2 · S2 + KAEP−S3 · S3 + 
 …+ KAEP−SN · SN                                        (5)

where:

QAEP = flood peak associated with an AEP (m3/s)

Si = ith statistical parameter, for i from 1 to N

KAEP−Si = frequency factor, related to AEP for Si

N = total number of statistics considered

DATA

Similar to the study by Van der Spuy and Du Plessis (2022b), 
only AMS flood peak data were considered in this study. It 
has been reported that the partial duration series (PDS) flood 
peak data approach does not really improve results, especially 
for an ARI (annual recurrence interval) higher than 10 years 
(Mkhandi et al., 2005; Karim et al., 2017). Srikanthan (2014) also 
concluded that, since the AMS results in the smallest bias in most 
cases, the use of AMS in FFA is preferred to PDS.

Data sources

Van der Spuy and Du Plessis (2022b) used 18 sites for their study. 
A further 23 sites were added to these sites for this study, ensuring 
more comprehensive coverage across South Africa. The objective 
was to find suitable sites, with verified reliable data, in areas and 
drainage regions not covered previously. There was an attempt to 
keep the record lengths at 60 years and above; however, 2 sites had 
record lengths of 58 and 57 years, respectively, and 1 site a record 
length of only 39 years. These sites were included to provide some 
data in areas where appropriate sites are very limited.

The location of the selected 41 flow sites is depicted in Fig. 1. 
Relevant metadata for the flow sites, which include 37 dam and 

Table 2. Example of clusters considered with different measures of central tendency

Use of average values Use of median values Use of geometric mean values

Qave, SD Qmdn, SD Qgmn, SD

Qave, SD, g Qmdn, SD, g Qgmn, SD, g

etc. etc. etc.
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4 gauging weir sites with a combined database of 3 615 years of 
usable AMS flood peaks, are provided in Table A1 (Appendix). 
The sites amply cover the vast diversity of meteorological and 
hydrological conditions experienced across SA.

Extracted data used in study

Selected statistics computed from the AMS at each site, utilised 
as independent variables in the MRA approach, are presented in 
Table A2 (Appendix). The most appropriate statistics, from these 
selected statistics, constitute the input into a probability model to 
produce estimated flood peak values (Qest) at corresponding AEPs.

Selected flood frequency data (Qobs vs selected AEPs), applied 
as dependent variables in the MRA, are presented in Table A3 
(Appendix).

RESULTS

The results are presented below in sections corresponding to the 
phases defined in the methodology. The acronym of the proposed 
flood quantile model is identified in advance, since it appears on 
figures presented as part of the results and is defined as the IPZA 
(Improved Probability-model, South Africa).

Phase 1: Evaluation of statistics as potential independent 
variables

MRA clusters, containing numerous combinations of the initially 
selected statistics (Qmax, Qmin, Qave, Qave*, Qmdn, Qmdn*, Qgmn, SD, 
SD*, SD*⁰, g, g*, COV, COV*, COV*⁰, Zmax and Zmin), were 
performed and assessed. As could be expected, variables such as 

Qave, Qmdn, Qgmn and SD were considered as potentially significant. 
Unexpectedly, and contrary to existing practice and beliefs, the 
initial evaluations suggested that the effect of including skewness 
(g) might be statistically insignificant. It was thus hypothesised 
that omitting g would either have no effect or potentially improve 
the results. Since the SD relates to the slope of the relative 
distribution of the data points (in this case a scatterplot of flood 
peaks against their corresponding Zscores), and is thus affected 
by outliers, it was furthermore hypothesised that replacing g 
with SD* might improve the outcome. In addition, SD*, SD*⁰ 
and SD** were also considered as being potentially significant. 
The example in Fig. 2 (from an MRA at a chosen AEP) illustrates 
what led to the suggestion that replacing g with SD* might 
improve results.

Several clusters were evaluated graphically, corroborated by the 
coefficient of determination (R2), to determine whether they 
could contribute to improve the results, or not (also illustrated by 
Fig. 2). After much experimentation and evaluation, the following 
statistics/parameters were excluded (Qmax, Qmin, Zmax, Zmin, Qave*, 
Qmdn*, g*, kurt, kurt*, COV, COV*) and the following retained 
(Qave, Qmdn, Qgmn, SD, SD*, g) for more detailed analyses.

Phase 2: Identify parameters for flood quantile model

To find the best grouping of parameters, different clusters were 
used with one of the measures of central tendency as the integral 
statistic, supplemented by SD and g.

To test the hypothesis that replacing g with SD* may improve results, 
clusters were added where g was replaced by SD*. The clusters 
considered and the selected statistics are depicted in Table 3.

Figure 1. Distribution of sites
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MRAs were conducted at all stations for all selected AEPs for every 
cluster (a total of 198 MRAs). The summarised outcome of the 
ranking results of the MAPE and MAE KPIs, based on the average 
value for an AEP range at all stations, is presented in Table 4 – 
the MAPE results for the AEP ≤ 50% range are provided in Table 
A4 (Appendix).

Based on the ranking results, bearing in mind that the MAPE is 
considered to be more relevant for AEPs ≤ 50% and the MAE for 
AEPs > 50%, the following was noted:

•	 As hypothesised, regardless of the measure of tendency 
used, the clusters with the g statistic generally performed 
the worst – the exception being Gmn1 for AEPs ≤ 50%.

•	 Regardless of the measure of central tendency used, the 
clusters with the SD* statistic performed the best overall 
– the exception being Mdn0 for AEPs >  50% (only with  
MAE).

•	 The poor performance of the Qmdn clusters was disappointing 
since the median (as with the geometric mean) is generally 

considered to be closer to the estimated 50% AMS flood 
peak (=– to a 2-year ARI).

•	 For AEPs ≤  50% both MAPE and MAE indicated that 
Cluster Ave2 (Qave SD and SD*) performed the best – with 
Cluster Gmn2 being 2nd best.

•	 For AEPs >  50% (ARI  <  2 years) both MAPE and MAE 
indicated that Cluster Gmn2 (Qgmn SD and SD*) performed the 
best.

To illustrate some of the above findings, visual comparisons of 
clusters are presented, indicating which cluster is categorised as 
noticeably better or only slightly better, than the other. For each 
category the sites, which indicate the most noticeable difference 
between the clusters, were selected to illustrate the differences and 
are depicted below, as follows:

•	 The suggestion, that the g-statistic is not a statistically 
significant variable, is visually illustrated in Fig.  3 (Ave0 
vs Ave1), supported by the estimated significance levels, at 
selected AEPs in Table 5.

Figure 2. MRA results at AEP = 80%: inclusion of g vs SD*

Table 3. Clusters considered with different measures of tendency

Average (Qave) Median (Qmdn) Geometric mean (Qgmn)

Acronym Statistics Acronym Statistics Acronym Statistics

Ave0 Qave, SD Mdn0 Qmdn, SD Gmn0 Qgmn, SD

Ave1 Qave, SD, g Mdn1 Qmdn, SD, g Gmn1 Qgmn, SD, g

Ave2 Qave, SD, SD* Mdn2 Qmdn, SD, SD* Gmn2 Qgmn, SD, SD*

Table 4. Ranking results

AEP range Qave clusters Qmdn clusters Qgmn clusters

Ave0 Ave1 Ave2 Mdn0 Mdn1 Mdn2 Gmn0 Gmn1 Gmn2

Qave, 
SD

Qave, 
SD, g

Qave, 
SD, SD*

Qmdn, 
SD

Qmdn, 
SD, g

Qmdn, 
SD, SD*

Qgmn, 
SD

Qgmn, 
SD, g

Qgmn, 
SD, SD*

MAPE ranking

≤ 50% 3 5 1 7 9 4 8 6 2

> 50% 8 9 7 5 6 4 2 3 1

MAE ranking

≤ 50% 5 4 1 8 6 3 9 7 2

> 50% 8 9 3 4 7 5 2 6 1
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Table 5. Levels of significance for Cluster Ave1

AEP (%) R2 Levels of significance Shading indicating evidence 
 of significance

(after Ganesh and Cave, 2018)F-value P-value

Qave SD g

90 0.9598 4.640 x 10−26 4.667 x 10−19 4.037 x 10−08 0.6172

70 0.9851 4.673 x 10−34 4.501 x 10−25 6.055 x 10−10 0.8068 P-value < 0.001
Very strong evidence

50 0.9963 3.108 x 10−45 1.821 x 10−34 1.948 x 10−13 0.8031

20 0.9995 7.675 x 10−61 2.515 x 10−46 2.691 x 10−04 0.5708 P-value < 0.01
Strong evidence

10 0.9973 8.345 x 10−48 3.775 x 10−30 5.875 x 10−05 0.8985

5 0.9962 5.518 x 10−45 6.755 x 10−25 4.938 x 10−09 0.6267 P-value < 0.05
Moderate evidence

2 0.9943 9.466 x 10−42 1.211 x 10−18 1.349 x 10−11 0.4455

1 0.9941 1.834 x 10−41 2.357 x 10−16 1.376 x 10−13 0.3663 P-value < 0.1
Weak evidence

0.5 0.9940 2.606 x 10−41 3.863 x 10−14 2.987 x 10−15 0.1972

0.2 0.9940 2.435 x 10−41 8.557 x 10−12 5.563 x 10−17 0.1166 P-value ≥ 0.1
Insufficient evidence

0.1 0.9944 6.902 x 10−42 1.281 x 10−10 1.814 x 10−18 0.0989

0.01 0.9963 3.810 x 10−45 2.374 x 10−08 8.437 x 10−24 0.1067

Figure 3. Compare Clusters Ave0 and Ave1 to illustrate non-performance of g
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Figure 4. Compare Clusters Ave0 and Ave2 to illustrate effect of introducing SD*

•	 The effect of introducing the SD* statistic is illustrated in 
Fig. 4 (Ave0 vs Ave2).

•	 The effect of replacing Qave with Qgmn is illustrated in Fig. 5 
(Ave2 vs Gmn2).

•	 In all ensuing figures, flood quantile plots are fitted using 
method of moments.

•	 The estimated RMF (regional maximum flood; after Kovács, 
1988) is also depicted on the relevant figures.

Combining the results of Ave2 (for AEPs  ≤  50%) and Gmn2 
(for AEPs  >  50%) was considered; however, this created a 
discontinuous transition in the region where the AEP = 50%.

To confirm that Cluster Ave2 might not be further improved, by 
inadvertently excluding more pertinent statistics, it was compared 
with Cluster Ave3 (Qave, SD, SD*⁰) and Cluster Ave4 (Qave, SD, 
SD**) and the results are presented in Table 6, where the MAE 
was used in the AEP range > 50% and MAPE was used in the AEP 
range ≤ 50%. SD*⁰ was calculated by excluding the highest and 
lowest flood peaks from the AMS dataset and SD** was calculated 
by excluding the highest 2 flood peaks from the AMS dataset.

The final choice was primarily guided by the relevance of the results in 
the design flood range, as well as avoiding unnecessarily complicated 
solutions. Accordingly, Ave2 was selected as the best cluster.
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Figure 5. Compare Clusters Ave2 and Gmn2 to illustrate effect if Qgmn replaces Qave

Table 6. Ranking results of various clusters of Qave

Site MAE used for AEP range > 50% MAPE used for AEP range ≤ 50%

Clusters Clusters

Ave2 Ave3 Ave4 Ave2 Ave3 Ave4 Ave2 Ave3 Ave4 Ave2 Ave3 Ave4

Qave, including Ranking Qave, including Ranking

SD, SD* SD, SD*⁰ SD, SD** 1 2 3 SD, SD* SD, SD*⁰ SD, SD** 1 2 3

Σ Σ

45 89 112 78 80 88

A3R002 1.0 2.2 2.3 1 2 3 11% 11% 12% 2 1 3

B1R001 9.0 15.4 14.4 1 3 2 6.0% 5.9% 5.3% 3 2 1

B2R001 1.5 5.4 8.7 1 2 3 1.5% 1.6% 2.3% 1 2 3

C1R002 8.4 14.9 18.0 1 2 3 3.5% 3.5% 3.1% 2 3 1

C2R001 0.3 0.6 0.7 1 2 3 3.5% 3.4% 4.0% 2 1 3

C5R002 53.1 78.4 49.1 2 3 1 5.8% 5.9% 3.4% 2 3 1

C9R002 35.0 49.6 48.9 1 3 2 2.0% 2.1% 2.1% 1 3 2

D3R002 35.7 65.4 76.6 1 2 3 1.7% 1.7% 1.4% 2 3 1

D7H005 48.5 61.5 78.1 1 2 3 2.7% 2.7% 3.2% 2 1 3
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Table 6 Continued. Ranking results of various clusters of Qave

Site MAE used for AEP range > 50% MAPE used for AEP range ≤ 50%

Clusters Clusters

Ave2 Ave3 Ave4 Ave2 Ave3 Ave4 Ave2 Ave3 Ave4 Ave2 Ave3 Ave4

Qave, including Ranking Qave, including Ranking

SD, SD* SD, SD*⁰ SD, SD** 1 2 3 SD, SD* SD, SD*⁰ SD, SD** 1 2 3

Σ Σ

45 89 112 78 80 88

J1R003 5.0 17.9 24.7 1 2 3 9.4% 9.5% 15% 1 2 3

J2R001 0.2 0.8 1.1 1 2 3 1.4% 7.0% 7.9% 1 2 3

N2R001 31.8 49.4 57.0 1 2 3 11% 11% 9.8% 2 3 1

Q1R001 7.7 10.3 9.6 1 3 2 13% 13% 11% 2 3 1

V6H002 27.7 29.4 28.2 1 3 2 4.2% 4.3% 4.0% 2 3 1

X1H001 14.7 21.6 21.4 1 3 2 9.0% 9.0% 7.4% 3 2 1

A2R001 5.8 9.1 11.3 1 2 3 2.8% 2.7% 3.2% 2 1 3

A2R005 1.9 2.1 2.3 1 2 3 14% 14% 14% 2 3 1

A4R001 5.2 10.9 13.4 1 2 3 8.1% 8.1% 8.9% 2 1 3

A8R001 2.2 9.9 14.4 1 2 3 4.0% 3.9% 6.6% 2 1 3

B3R001 1.7 3.6 4.7 1 2 3 4.6% 4.7% 5.0% 1 2 3

B6R003 9.8 10.7 13.3 1 2 3 4.6% 4.5% 4.6% 2 1 3

B7R001 8.0 9.1 8.8 1 3 2 16% 16% 15% 3 2 1

C3R002 3.1 7.6 10.1 1 2 3 4.7% 4.7% 5.2% 2 1 3

C5R001 8.6 13.4 16.7 1 2 3 6.1% 6.2% 7.0% 1 2 3

C5R003 2.5 8.6 16.3 1 2 3 3.9% 3.7% 4.6% 2 1 3

C7R001 3.9 8.6 11.2 1 2 3 4.9% 4.9% 4.6% 2 3 1

D6R002 3.0 6.7 13.7 1 2 3 8.8% 8.6% 16% 2 1 3

E1R002 11.5 12.3 15.1 1 2 3 4.0% 4.0% 3.8% 2 3 1

H5H004 24.0 20.7 20.6 3 2 1 2.2% 2.8% 3.7% 1 2 3

J2R003 0.9 1.6 1.9 1 2 3 9.2% 9.1% 10.0% 2 1 3

J3R001 25.0 35.0 38.6 1 2 3 11% 12% 9.3% 2 3 1

N1R001 3.1 11.8 16.5 1 2 3 7.3% 7.3% 6.2% 3 2 1

Q4R002 1.6 3.4 4.0 1 2 3 1.7% 1.6% 2.2% 2 1 3

Q5R001 5.0 18.0 31.4 1 2 3 1.2% 1.3% 2.0% 1 2 3

S6R002 6.5 7.8 8.0 1 2 3 9.0% 8.9% 8.5% 3 2 1

T2R001 22.4 20.4 22.5 2 1 3 7.1% 7.1% 7.6% 1 2 3

U2R001 6.2 6.4 7.5 1 2 3 10% 10% 8.8% 2 3 1

U3R001 9.3 13.0 14.6 1 2 3 9.8% 9.6% 9.8% 2 1 3

V1R003 11.4 12.9 22.4 1 2 3 1.6% 1.5% 2.2% 2 1 3

V3R003 4.8 5.6 5.0 1 3 2 4.9% 4.9% 3.2% 2 3 1

W4R001 22.2 45.9 53.3 1 2 3 2.6% 2.3% 3.8% 2 1 3

Phase 3: Flood quantile model

Estimated regression coefficients, for the independent variables used 
in the MRAs of Cluster Ave2, are provided in Table 7 and Table 8, for 
every chosen AEP with the associated standardised variate WP.

To limit the size of the tables presented, only the most common 
AEPs ≤ 50% are included. A comparison of Qobs with Qest results, 
from MRA for Cluster Ave2, is provided in Table 9, with illustrative 
scatterplots in Fig. 6.

To illustrate the estimation of the 1% flood peak at B1R001:

•	 Relevant statistics for B1R001: Qave = 280 m3/s, SD = 384 m3/s 
and SD* = 317 m3/s (Table A2)

•	 At AEP = 1%: the respective regression coefficients are 
1.1443, 1.0642 and 2.5224 (Table 8)

•	 Therefore, Qest = 1.1443 · 280 + 1.0642 · 384 + 2.5224 · 317 = 
1 528.66 m3/s
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Table 7. Estimated MRA regression coefficients at corresponding AEPs (99.5%–20%)

AEP(%) 99.5 99 95 90 80 70 60 50 40 30 20

WP −1.6674 −1.5272 −1.0972 −0.834 −0.4759 −0.1856 0.0874 0.3665 0.6717 1.0309 1.4999

MRA regression coefficients

Qave 0.1756 0.2225 0.3889 0.5021 0.6779 0.8308 0.9688 1.1036 1.2365 1.3645 1.4769

SD −0.0132 −0.0155 −0.0276 −0.0361 −0.0567 −0.0798 −0.0977 −0.1240 −0.1327 −0.1548 −0.1294

SD* −0.1221 −0.1540 −0.2509 −0.3035 −0.3603 −0.3807 −0.3757 −0.3301 −0.2659 −0.1039 0.1416

Table 8. Estimated MRA regression coefficients at corresponding AEPs (10%–0.001%)

AEP(%) 10 5 2 1 0.5 0.2 0.1 0.03 0.01 0.003 0.001

WP 2.2504 2.9702 3.9019 4.6001 5.2958 6.2136 6.9073 8.1116 9.2103 10.4143 11.5129

MRA regression coefficients

Qave 1.5089 1.4806 1.2683 1.1443 0.9282 0.6254 0.4426 0.2181 0.0025 -0.0513 0.0838

SD 0.0275 0.1991 0.6210 1.0642 1.6532 2.4266 3.0775 4.3237 5.3624 6.6915 8.0279

SD* 0.7250 1.2545 2.0693 2.5224 2.8720 3.3928 3.6379 3.7631 4.0032 3.7216 3.0235

Table 9. MRA estimates; Qest vs Qobs for Cluster Ave2

Site Moments AEP (%)

50 20 10 5 2 1* 0.5

Q and SD values in m3/s

Qave SD SD* Qobs Qest Qobs Qest Qobs Qest Qobs Qest Qobs Qest Qobs Qest Qobs Qest

A3R002 37.4 63.3 44.7 16.5 18.7 54.3 53.4 95.4 87.1 140 124 208 179 262 223 317 268

B1R001 280 384 317 141 156 418 408 683 642 969 889 1 384 1 250 1 620 1 529 1 793 1 806

B2R001 144 188 171 80.9 79.5 215 213 334 336 470 465 662 653 809 796 956 935

C1R002 494 421 388 373 365 721 730 983 1 015 1 260 1 301 1 614 1 690 1 888 1 992 2 162 2 268

C2R001 23.2 22.0 20.4 16.1 16.2 35.0 34.4 49.2 49.3 64.7 64.4 86.6 85.4 101 102 118 117

C5R002 547 1 223 824 236 180 738 766 1 301 1 389 1 973 2 087 2 985 3 158 3 821 4 006 4 700 4 896

C9R002 1 216 1 251 1 154 764 806 1 827 1 797 2 703 2 636 3 611 3 496 4 789 4 706 5 749 5 633 6 591 6 510

D3R002 2 614 2 094 1 928 2 024 1 990 3 847 3 863 5 209 5 285 6 575 6 707 8 377 8 606 9 852 10 083 11 146 11 425

D7H005 1 730 1 690 1 540 1 157 1 191 2 596 2 554 3 810 3 680 5 001 4 830 6 742 6 430 7 984 7 662 9 247 8 822

J1R003 298 665 398 112 115 421 410 783 720 1 141 1 072 1 753 1 613 2 360 2 051 2 991 2 517

J2R001 20.4 29.1 22.8 11.4 11.4 29.8 29.6 45.8 46.6 64.6 64.7 91.4 91.2 113 112 138 133

N2R001 467 796 641 229 205 618 677 1 005 1 147 1 465 1 653 2 129 2 412 2 634 2 998 3 156 3 590

Q1R001 123 139 121 87.1 79.2 174 181 244 270 317 362 418 493 500 594 579 691

V6H002 949 492 469 841 831 1 360 1 404 1 719 1 759 2 064 2 092 2 507 2 481 2 835 2 794 3 159 3 043

X1H001 302 371 308 202 186 431 442 628 669 837 907 1 129 1 251 1 358 1 518 1 591 1 779

A2R001 278 301 267 177 181 422 409 630 604 841 806 1 137 1 092 1 364 1 312 1 591 1 523

A2R005 33.9 49.8 29.6 22.0 21.5 51.3 47.9 80.5 71.3 112 97.4 160 135 223 167 262 199

A4R001 181 281 240 73.4 85.3 261 265 443 439 649 625 953 901 1 204 1 112 1 438 1 322

A8R001 227 409 278 103 109 319 322 541 533 742 766 1 173 1 117 1 454 1 396 1 795 1 685

B3R001 58.5 96.5 70.7 29.7 29.2 79.3 83.9 129 137 181 194 258 280 332 348 395 417

B6R003 283 282 233 198 201 427 415 630 589 820 768 1 089 1 016 1 299 1 212 1 474 1 398

B7R001 89.4 137 92.6 38.7 51.1 138 127 236 198 350 276 466 390 558 482 693 575

C3R002 192 318 178 112 114 273 267 421 409 587 570 824 809 1 027 1 007 1 449 1 215

C5R001 101 226 156 33.8 32.0 133 142 237 260 357 391 534 592 680 750 834 916

C5R003 193 336 226 89.0 96.6 256 273 432 446 628 636 897 921 1 120 1 148 1 354 1 383

C7R001 251 264 234 173 168 368 370 527 541 694 718 928 966 1 105 1 158 1 282 1 341

D6R002 122 195 147 56.2 61.4 185 175 313 285 404 403 678 580 863 718 1 043 858

E1R002 408 309 291 325 316 591 604 785 819 978 1 031 1 232 1 312 1 425 1 530 1 619 1 725

H5H004 661 409 367 563 557 972 975 1 194 1 252 1 519 1 520 1 815 1 852 2 051 2 117 2 352 2 344

J2R003 17.5 32.9 26.8 6.00 6.44 23.3 25.4 43.7 45.0 65.7 66.1 98.3 98.1 129 123 159 148

*The value in the shaded cell is illustrated below in estimating the 1% flood peak at B1R001
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Figure 6. Scatterplots illustrating Qest vs Qobs at AEP = 50% and AEP = 0.5%

Table 9 Continued. MRA estimates; Qest vs Qobs for Cluster Ave2

Site Moments AEP (%)

50 20 10 5 2 1* 0.5

Q and SD values in m3/s

Qave SD SD* Qobs Qest Qobs Qest Qobs Qest Qobs Qest Qobs Qest Qobs Qest Qobs Qest

J3R001 184 428 347 45.0 35.9 203 266 406 518 665 793 1 068 1 217 1 409 1 541 1 756 1 875

N1R001 243 455 301 104 112 342 342 597 572 898 827 1 342 1 213 1 685 1 521 2 037 1 841

Q4R002 142 147 130 98.1 95.9 212 209 301 305 397 403 531 541 642 647 736 749

Q5R001 452 639 538 241 243 646 662 1 033 1 055 1 441 1 472 2 076 2 084 2 518 2 555 2 962 3 022

S6R002 108 146 110 55.1 64.4 162 156 266 238 376 326 511 454 598 555 730 656

T2R001 285 237 215 199 215 454 421 652 580 852 740 1 083 954 1 235 1 121 1 374 1 274

U2R001 166 202 93.8 122 127 239 232 335 313 495 403 694 530 827 641 948 757

U3R001 174 279 192 77.7 94.4 251 248 426 394 614 554 911 790 1 143 979 1 378 1 173

V1R003 566 437 401 429 438 848 837 1 126 1 133 1 447 1 428 1 875 1 819 2 176 2 124 2 367 2 399

V3R003 102 73.9 66.3 84.5 81.4 147 150 188 200 237 249 290 312 334 362 377 407

W4R001 1 003 1 931 929 546 561 1 376 1 364 2 150 2 135 3 049 3 036 4 386 4 395 5 500 5 547 6 675 6 793

R2 0.9988 0.9995 0.9987 0.9985 0.9979 0.9979 0.9975

*The value in the shaded cell, is illustrated below in estimating the 1% flood peak at B1R001

The regression coefficients become the frequency factors and a 
polynomial function (Eq. 4) was fitted to establish a continuous 
relationship between the frequency factors and WP to estimate 
intermediate values. The graphs, showing the relationships 
between WP and the estimated frequency factors KP−Q, KP−SD and 
KP−SD*, respectively associated with Qave, SD and SD*, are provided 
in Fig. 7.

From the selected Ave2 cluster, the parameters for the flood 
quantile model are Qave, SD and SD*. Equation  5 can thus be 
rephrased as the general form of the IPZA flood quantile equation:

QAEP = KP−Q · Qave + KP−SD · SD + KP−SD* · SD*            (6)

where: KP−Q, KP−SD and KP−SD* are the frequency factors for their 
respective parameters.

The estimated frequency factors for selected AEP values are 
provided in Table 10.

Assessment of IPZA

In this section a brief assessment is done on the tendency of IPZA 
to under- or overestimate, and on the performance of IPZA in 
relation to outliers.

Under- or overestimation

It is beneficial to identify whether a particular probability distri-
bution or flood quantile model tends to overestimate or underes-
timate. Applicable criteria are not readily available and appear to 
depend on the focus of the study. Haddad and Rahman (2012),  
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Figure 7. Graphs showing the relationship between WP and the frequency factors 

Table 10. Frequency factors for IPZA

AEP (%) 50 20 10 5 2 1 0.5 0.2 0.1 0.05 0.02 0.01

WP 0.3665 1.4999 2.2504 2.9702 3.9019 4.6001 5.2958 6.2136 6.9073 7.6007 8.5171 9.2103

Frequency factors

KP−Q 1.1035 1.4673 1.5258 1.4791 1.3099 1.1296 0.9249 0.6444 0.4429 0.2641 0.0803 −0.0082

KP−SD −0.1216 −0.1320 −0.0286 0.1838 0.6317 1.0865 1.6253 2.4345 3.0952 3.7787 4.6980 5.4022

KP−SD* −0.3379 0.1553 0.7155 1.3020 2.0310 2.5124 2.9205 3.3465 3.5892 3.7695 3.9131 3.9379

considering the focus for their study, suggested that a Qest/Qobs  
ratio value of between 0.5 and 2 may be considered as acceptable. 
However, an underestimation of 50% and overestimation of 100% 
is considered completely unacceptable for this study and the sug-
gested criteria in Table  11 were utilised to determine whether 
IPZA tends to underestimate or overestimate, and whether it was 
considered acceptable or not.

The criteria were applied to all sites at every AEP and the 
average outcome was calculated for every site separately for the 
AEPs > 50% and the AEPs ≤ 50%. The number of sites compliant 
with the criteria is depicted in Table 12.

In the design flood range IPZA performs very well using the 
defined criteria. For AEP > 50% the performance is slightly lower, 
but it still outperforms the GEV in this range (refer to Fig. 3 to 
Fig. 5, as well as Fig. 8).

Outliers

The performance of IPZA, in relation to how it is affected 
by outliers, will be pivotal in whether its performance is an 
improvement to existing probability distributions used in South 
Africa or not. The study sites with the most distinctive outliers are 
depicted in Fig. 8 as an illustration.

Table 11. Criteria to establish the tendency of IPZA to under- or overestimate

Limit Criteria (all Q values in m3/s)

Underestimation unacceptable Qest − Qobs < −6 or (Qest/Qobs − 1) < −20%

Underestimation acceptable −6 ≤ Qest − Qobs  < −3 or −20% ≤ (Qest/Qobs − 1) < −10%

Estimation good −3 ≤ Qest − Qobs  ≤ 3 or −10% ≤ (Qest/Qobs − 1) ≤ 10%

Overestimation acceptable 3 < Qest − Qobs  ≤ 6 or 10% < (Qest/Qobs − 1) ≤ 20%

Overestimation unacceptable Qest − Qobs  > 6 or (Qest/Qobs − 1) > 20%

Table 12. Number of sites compliant with set criteria

Criteria AEP > 50% AEP ≤ 50%

Number of sites

Underestimation unacceptable 6 0

Underestimation acceptable 3 3

Estimation good 19 37

Overestimation acceptable 9 1

Overestimation unacceptable 4 0
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Figure 8. Illustration of impact of outliers on IPZA 
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It is important to note in Fig. 8 that:

•	 The PPs represent the full AMS for both columns (outlier 
still part of the AMS)

•	 The outlier was removed in the estimation of the moments 
for GEV and LP3 to assess if it would fit the rest of the data 
better (IPZA was developed to accommodate outliers – 
there is no need to remove it)

From Fig.  8 it is evident that the GEV and LP3 probability 
distributions, with the outlier excluded in the estimation of 
moments, plot much closer to IPZA, especially in the case of 
the GEV – the exception being the Midmar Dam, where PILFs 
(potential influential low flows) can severely influence the LP3.

DISCUSSION

The primary objective of this study was to propose a more 
consistent flood quantile methodology. The Z-set PP established 
the foundation for the development of the proposed IPZA flood 
quantile model. Although only 41 sites were used in the study, due 
to record length and data accuracy constraints, the coverage of 
sites across South Africa and the diversity of meteorological and 
hydrological conditions were well covered.

The study leading to the culmination of the IPZA flood quantile 
model, has unveiled some noteworthy observations:

•	 Wheeler (2022) expressed his concern that many believe 
the first step in data analysis is to check for normality. With 
IPZA there is no need to transform data or moments to 
make the distribution ‘more normal’, which makes it simple 
to use.

•	 Wheeler (2022) also explained that no skewed probability 
model exists to fit strongly skewed data. To use the MRA 
approach to estimate parameters for a flood quantile model 
might perhaps be considered as unconventional, but the 
results proved to be exceptionally good.

•	 The hypothesis that to omit g would either have no effect 
or improve the results was proved correct. This might seem 
to be a surprising result, but it could have been expected, 
considering the statement by Wheeler (2011) that to 
estimate g with a similar degree of confidence than the 
location statistics (Qave and SD), 6 times the record length is 
required. This might be the reason why some distributions 
often do not perform well, considering that the sample g 
is most probably not representative of the skewness of the 
underlying distribution.

•	 The hypothesis that the addition of SD* might improve 
results, was also proved correct. It appears that SD* might 
compensate for the instances where SD is affected by 
extremely high flood peaks, resulting in an inaccurate slope 
for the relative distribution of data points. Where no outlier 
is present SD ≈ SD*, with no effect on results, as illustrated 
in Fig. 4 at Wolvendfrift and Bloemhof Dam.

•	 Wide-ranging speculation about whether the median 
statistic should be used instead of the average, was 
challenged by the outcome of this study, demonstrating 
the average value to be the best option (even the geometric 
mean proved to be a more viable option than the median).

•	 The IPZA seems to be virtually unaffected by outliers. 
Consequently, the problem to decide whether to ignore a 
suspected outlier, or not, should no longer be a concern.

•	 The IPZA is extremely consistent in the design flood range 
(AEP  ≤  50%; ARI  ≥  2  years) in estimating flood peak 
frequencies from AMS. According to the set criteria, the 
estimated flood peaks are considered as ‘good’ at 37 of the 
41 sites – and ‘acceptable’ at the remaining sites.

CONCLUSION

The Z-set PP, which adjusted the PP of outliers, provided the basis 
for finding a corresponding solution for a more consistent flood 
quantile methodology. Whether the IPZA can be considered as 
bounded, or not, is inconclusive at this stage. However, from the 
results presented it can be concluded that the IPZA is probably 
more likely to have an upper bound than the GEV or LP3.

The IPZA seems to be much more stable and consistent in the 
estimation of flood quantiles, compared to the GEV and the LP3, 
as depicted on all the included FFA results.

Further research to improve the IPZA should include:

•	 Investigate the less satisfactory estimates for AEPs > 50%.
•	 The performance of IPZA should be evaluated with shorter 

AMS record lengths, at sites with good, verified data.
•	 Although the study sites did cover diverse meteorological 

and hydrological conditions, it should be tested with 
datasets from outside South Africa to further evaluate its 
performance.

It is recommended that the IPZA be used as a valuable addition 
to the existing set of decision-making tools for flood hydrologists/
engineers performing FFA.

The above conclusion specifically does not exclude the use of other 
probability distributions. It is sound practice to use more than one 
FFA method and to choose the one that fits the observed AMS 
flood peaks the best, according to the hydrologist’s own sound 
scientific judgement. Therefore, regardless of which approach (or 
even software) is used to determine a ‘best fit’, a visual check to 
verify, or even change, the outcome is strongly recommended.

REFERENCES

ALEXANDER WJR (1990) Flood Hydrology for Southern Africa. South 
African National Committee on Large Dams, 1990.

BALL J, BABISTER M, NATHAN R, WEEKS W, WEINMANN E, 
RETALLICK M and TESTONI I (eds) (2019) Australian Rainfall and 
Runoff: A Guide to Flood Estimation. Commonwealth of Australia 
(Geoscience Australia). URL: https://arr.ga.gov.au/

BROWNLEE J (2018) How to use statistics to identify outliers in data. 
Machine Learning Mastery. URL: https://machinelearningmastery.
com/how-to-use-statistics-to-identify-outliers-in-data/ (Accessed 8 
May 2019).

COURTNEY C (2018) The Nature of Disaster in China: The 1931 Yangzi 
River Flood (Studies in Environment and History). Cambridge 
University Press, Cambridge. https://doi.org/10.1017/9781108278362

DYSON LL and VAN HEERDEN J (2001) The heavy rainfall and floods 
over the northeastern interior of South Africa. S. Afr. J. Sci. 97 (3) 
80–86.

DWS (Department of Water and Sanitation) (1993–2021) Flood 
frequency analyses intended for dam safety evaluation (numerous 
reports) Department of Water and Sanitation, Pretoria.

FROST J (2019) 5 ways to find outliers in your data. Statistics by Jim. 
URL: https://statisticsbyjim.com/basics/outliers/ (Accessed 8 May 2019).

GANESH S and CAVE V (2018) P-values, P-values everywhere! N. Zeal. 
Vet. J. 66 (2) 55–56. https://doi.org/10.1080/00480169.2018.1415604

HADDAD K and RAHMAN A (2012) Regional flood frequency analysis 
in eastern Australia: Bayesian GLS regression-based methods 
within fixed region and ROI framework – quantile regression 
vs parameter regression technique. J. Hydrol. 430–431  142–161. 
https://doi.org/10.1016/j.jhydrol.2012.02.012

KARIM F, HASAN M and MARVANEK S (2017) Evaluating annual 
maximum and partial duration series for estimating frequency of 
small magnitude floods. Water 2017 9 (7) article 481. https://doi.
org/10.3390/w9070481

KOVÁCS Z (1988) Regional maximum flood peaks in Southern Africa. 
Technical Report 137. Department of Water Affairs, South Africa.

KOVÁCS ZP, DU PLESSIS DB, BRACHER PR, DUNN P and MALLORY 
GCL (1985) Documentation of the 1984 Domoina Floods. Technical 
Report 122. Department of Water Affairs, South Africa.

https://arr.ga.gov.au/
https://machinelearningmastery.com/how-to-use-statistics-to-identify-outliers-in-data/%20
https://machinelearningmastery.com/how-to-use-statistics-to-identify-outliers-in-data/%20
https://doi.org/10.1017/9781108278362
https://statisticsbyjim.com/basics/outliers/%20
https://doi.org/10.1080/00480169.2018.1415604
https://doi.org/10.1016/j.jhydrol.2012.02.012
https://doi.org/10.3390/w9070481
https://doi.org/10.3390/w9070481


15Water SA 50(1) 1–19 / Jan 2024
https://doi.org/10.17159/wsa/2024.v50.i1.4022

MKHANDI S, OPERE AO and WILLEMS P (2005) Comparison 
between annual maximum and peaks over threshold models for 
flood frequency prediction. In: Proceedings of the International 
Conference on UNESCO FRIEND/Nile Project: Towards a better 
Cooperation, 12–15 November 2005, Sharm-El-Sheikh, Egypt.

SANRAL (South African National Roads Agency) (2013) Drainage 
Manual, 6th edition. South African National Roads Agency Ltd, 
Pretoria.

SRIKANTHAN S (2014) A comparison of annual maximum and 
partial duration series in frequency analysis. In: Proceedings of the 
Hydrology and Water Resources Symposium, HWRS 2014. 374–381.

ROBERTS CPR and ALEXANDER WJR (1982) Lessons learnt from the 
1981 Laingsburg Flood. Die Siviele Ingenieur (Civil Engineering) 24 
(1) 17–27.

VAN BLADEREN D and BURGER CE (1989) Documentation of the 
September 1987 Natal Floods. Technical Report 139. Department of 
Water Affairs, South Africa.

VAN DER SPUY D and DU PLESSIS JA (2022a) Flood frequency 
analysis – Part 1: Review of the statistical approach in  
South Africa. Water SA 48 (2) 110–119. https://doi.org/10.17159/
wsa/2022.v48.i2.3848.1

VAN DER SPUY D and DU PLESSIS JA (2022b) Flood frequency 
analysis – Part 2: Development of a modified plotting position. 
Water SA 48 (2) 120–130. https://doi.org/10.17159/wsa/2022.v48.
i2.3848.2

WHEELER DJ (2009) Transforming the data can be fatal to your 
analysis. Quality Digest. URL: https://www.qualitydigest.com/
inside/quality-insider-column/transforming-data-can-be-fatal-your-
analysis.html (Accessed 20 December 2022).

WHEELER DJ (2011) Problems with skewness and kurtosis, Part Two: 
What do the shape parameters do? Quality Digest. URL: https:// 
www.qualitydigest.com/inside/quality-insider-article/problems-skew 
ness-and-kurtosis-part-two.html (Accessed 4 August 2018).

WHEELER DJ (2022) How Can a Control Chart Work Without a 
Distribution? Quality Digest. URL: https://www.qualitydigest.com/
inside/six-sigma-column/how-can-control-chart-work-without-distrib 
ution-042522.html? (Accessed 3 May 2022).

https://doi.org/10.17159/wsa/2022.v48.i2.3848.1
https://doi.org/10.17159/wsa/2022.v48.i2.3848.1
https://doi.org/10.17159/wsa/2022.v48.i2.3848.2
https://doi.org/10.17159/wsa/2022.v48.i2.3848.2
https://www.qualitydigest.com/inside/quality-insider-column/transforming-data-can-be-fatal-your-analysis.html
https://www.qualitydigest.com/inside/quality-insider-column/transforming-data-can-be-fatal-your-analysis.html
https://www.qualitydigest.com/inside/quality-insider-column/transforming-data-can-be-fatal-your-analysis.html
https://www.qualitydigest.com/inside/quality-insider-article/problems-skewness-and-kurtosis-part-two.html%20
https://www.qualitydigest.com/inside/quality-insider-article/problems-skewness-and-kurtosis-part-two.html%20
https://www.qualitydigest.com/inside/quality-insider-article/problems-skewness-and-kurtosis-part-two.html%20
https://www.qualitydigest.com/inside/six-sigma-column/how-can-control-chart-work-without-distribution-042522.html?%20
https://www.qualitydigest.com/inside/six-sigma-column/how-can-control-chart-work-without-distribution-042522.html?%20
https://www.qualitydigest.com/inside/six-sigma-column/how-can-control-chart-work-without-distribution-042522.html?%20


16Water SA 50(1) 1–19 / Jan 2024
https://doi.org/10.17159/wsa/2024.v50.i1.4022

Table A1. Sites megadata

Site Augment record 

with data from site1

Catchment 
area (km2)

AMS flood peaks 
(m3/s)

Record length 
(years)

Number Name River Lowest Highest Total Usable

A2R001 Hartebeespoort Crocodile A2H012/013 4 014 13 1 670 97 97

A2R005 Buffelspoort Sterkstroom - 119 0.9 398 84 84

A3R002 Klein Maricopoort Klein Marico A3H001 1 157 0.6 506 112 110

A4R001 Mokolo Mokolo A4H005 4 319 1.2 1 291 57 57

A8R001 Nzhelele Nzhelele A8H001 830 2.0 2 795 86 74

B1R001 Witbank Olifants B1H001 3 579 3.5 2 565 114 112

B2R001 Bronkhorstspruit Bronkhorstspruit B2H001 1 244 2.2 995 114 114

B3R001 Rust de Winter Elands - 1 133 2.3 665 86 86

B6R003 Blyderivierspoort Blyde B6H004/5 2 169 19 1 615 69 69

B7R001 Klaserie Klaserie B7H004 164 0.2 915 69 68

C1R002 Grootdraai Vaal (upper) C1H001 7 982 42 2 275 114 114

C2R001 Boskop Mooi C2H001 3 297 2.1 112 114 114

C3R002 Spitskop Harts C3H007 26 730 13 2 760 96 96

C5R001 Tierpoort Tierpoort - 922 2.1 1 670 97 93

C5R002 Kalkfontein Riet C5H001 10 260 3.2 9 800 106 106

C5R003 Rustfontein Modder C5H003 937 9.2 2 670 101 101

C7R001 Koppies Renoster - 2 142 23 1 480 99 99

C9R002 Bloemhof Vaal (middle) C9H006 108 360 85 6 340 110 108

D3R002 Gariep Orange (upper) D3H002 70 655 106 11 460 115 114

D6R002 Smartt Syndicate Ongers - 13 340 1.0 1 190 92 71

D7H005 Upington Orange (lower) D7H003 361 512 130 8 315 87 87

E1R002 Clanwilliam Olifants - 2 025 30 1 385 84 84

H5H004 Wolvendrift Bree H5H002 6 713 68 2 137 65 65

J1R003 Floriskraal Buffels J1H004 4 024 1.1 5 475 98 96

J2R001 Calitzdorp Nels - 37 0.6 191 99 89

J2R003 Oukloof Cordiers - 154 0.2 196 88 87

J3R001 Kammanassie Kammanassie J3H001 1 525 1.6 2 755 106 105

N1R001 Nqweba Sundays - 3667 3.9 3 470 91 91

N2R001 Darlington Sondags N2H002 16 820 11 5 090 96 96

Q1R001 Grassridge Great Brak - 4 326 13 805 94 94

Q4R002 Kommandodrift Tarka Q4R001 3 623 4.8 802 90 90

Q5R001 Elandsdrift GreatFish Q7H001 16 854 9.0 3 888 113 99

S6R002 Wriggleswade Kubisi S6H002 447 1.3 881 68 66

T2R001 Mtata Mtata - 888 8.4 920 39 39

U2R001 Midmar Mgeni U2H001 928 11 1 565 63 63

U3R001 Hazelmere Mdloti U3H002 376 3.0 1 700 58 58

V1R003 Woodstock Tugela V1H002/026 1 149 41 2 140 84 75

V3R003 Zaaihoek Slang V3H005 620 13 382 71 71

V6H002 Tugela Ferry Tugela - 12 862 38 2 438 92 92

W4R001 Pongolapoort Phongolo W4H002 7 800 31 16 450 71 71

X1H001 Hooggenoeg Komati - 5 503 8.3 2 481 110 110
1Flow gauging weirs close to an existing dam was used to augment the inflow record at the dam. 

APPENDIX
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Table A2. Selected statistics considered in the MRA

Site Full record1 Record, excluding some data

Qmin Qmax Qave Qmdn Qgmn SD g Qave* Qmdn* SD* SD*⁰ g*

A2R001 13.0 1 670 278 181 164 301 2.133 263 180 267 267 1.749

A2R005 0.90 398 33.9 22.0 18.2 49.8 5.126 29.5 22.0 29.6 29.7 1.982

A3R002 0.60 506 37.4 19.5 15.4 63.3 4.696 33.1 18.0 44.7 44.8 2.916

A4R001 1.17 1 291 181 58.0 68.7 281 2.509 161 53.5 240 241 2.495

A8R001 2.00 2 795 227 89.5 98.8 409 4.380 192 88.0 278 279 3.334

B1R001 3.50 2 565 280 124 129 384 3.032 259 120 317 318 2.155

B2R001 2.20 995 144 79.0 74.9 188 2.690 137 78.0 171 171 2.637

B3R001 2.30 665 58.5 27.0 29.9 96.5 4.084 51.3 26.0 70.7 70.9 3.134

B6R003 19.0 1 615 283 229 181 282 2.254 264 224 233 232 1.475

B7R001 0.20 915 89.4 38.0 35.4 137 3.795 77.0 38.0 92.6 92.8 1.829

C1R002 42.0 2 275 494 367 357 421 1.849 478 366 388 387 1.634

C2R001 2.10 112 23.2 18.0 15.2 22.0 1.755 22.5 18.0 20.4 20.4 1.584

C3R002 12.6 2 760 192 99.5 107 318 6.008 165 99.0 178 178 2.614

C5R001 2.10 1 670 101 34.0 36.9 226 4.807 84.0 33.5 156 157 3.718

C5R002 3.20 9 800 547 210 221 1 223 5.642 459 207 824 827 5.076

C5R003 9.20 2 670 193 67.0 84.5 336 4.567 168 66.5 226 227 1.865

C7R001 23.0 1 480 251 170 164 264 2.413 239 167 234 234 2.144

C9R002 85.0 6 340 1 216 719 710 1 251 1.507 1 168 712 1 154 1 154 1.226

D3R002 106 11 460 2 614 1 976 1 941 2 094 1.769 2 536 1 967 1 928 1 923 1.532

D6R002 1.00 1 190 122 61.0 50.2 195 3.870 106 59.5 147 148 3.704

D7H005 130 8 315 1 730 1 294 1 070 1 690 1.762 1 653 1 285 1 540 1 540 1.566

E1R002 30.0 1 385 408 307 314 309 1.459 397 304 291 290 1.415

H5H004 67.9 2 137 661 595 545 409 1.367 638 588 367 342 1.050

J1R003 1.10 5 475 298 118 102 665 5.934 243 115 398 399 4.438

J2R001 0.60 191 20.4 11.0 11.0 29.1 3.573 18.5 11.0 22.8 22.9 2.878

J2R003 0.20 196 17.5 5.80 5.98 32.9 3.557 15.5 5.65 26.8 26.9 3.358

J3R001 1.60 2 755 184 42.0 43.8 428 3.946 160 41.0 347 348 3.683

N1R001 3.90 3 470 243 106 95.4 455 4.760 207 101 301 302 2.785

N2R001 11.0 5 090 467 193 220 796 3.523 418 192 641 645 2.980

Q1R001 13.0 805 123 80.5 85.0 139 3.037 116 80.0 121 121 2.924

Q4R002 4.80 802 142 93.5 93.3 147 2.514 135 89.0 130 130 2.345

Q5R001 9.00 3 888 452 236 229 639 2.986 417 226 538 539 2.513

S6R002 1.34 881 108 50.4 51.5 146 3.007 95.7 49.8 110 110 1.840

T2R001 8.40 920 285 235 177 237 0.883 269 225 215 214 0.721

U2R001 11.0 1 565 166 127 118 202 5.565 143 125 93.8 93.0 0.915

U3R001 3.00 1 700 174 69.0 72.3 279 3.521 147 69.0 192 192 2.119

V1R003 41.0 2 140 566 415 407 437 1.258 546 410 401 399 0.997

V3R003 13.4 382 102 88.0 81.3 73.9 1.793 97.9 85.5 66.3 65.9 1.586

V6H002 38.0 2 438 949 897 800 492 0.761 933 896 469 462 0.634

W4R001 31.0 16 450 1 003 488 528 1 931 6.470 820 485 929 931 2.676

X1H001 8.30 2 481 302 188 196 371 3.564 282 188 308 308 3.167
1Statistics include (Q and SD in m3/s): Qmax – maximum flood peak; Qmin – minimum flood peak; Qave – average flood peak; Qmdn – median flood peak; 
Qgmn – geometric mean flood peak; SD – standard deviation; g – skewness

*indicates the largest value (Qmax) is omitted from the dataset to determine statistic 
*⁰indicates that both the largest value (Qmax) and the smallest value (Qmin) are omitted from the dataset to determine statistics
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Table A3. Flood frequency data considered in the MRA approach

Site AEP (%)

99 95 90 80 50 20 10 5 2 1 0.5 0.2 0.1 0.01 0.001

Associated Qobs (m3/s) – from Z-set PP

A2R001 12 26 39 68 177 422 630 841 1 137 1 364 1 591 1 886 2 102 2 757 3 272

A2R005 0.93 3.2 3.7 6.8 22 51 81 112 160 223 262 309 342 465 621

A3R002 0.47 1.2 2.3 4.5 17 54 95 140 208 262 317 390 444 610 736

A4R001 2.0 5.5 10 19 73 261 443 649 953 1 204 1 438 1 750 1 987 2 791 3 629

A8R001 3.8 11 17 32 103 319 541 742 1 173 1 454 1 795 2 221 2 542 3 450 4 205

B1R001 5.2 13 22 42 141 418 683 969 1 384 1 620 1 793 2 338 2 749 3 571 4 285

B2R001 3.7 9.5 15 27 81 215 334 470 662 809 956 1 149 1 290 1 717 2 039

B3R001 1.9 4.3 7.0 12 30 79 129 181 258 332 395 486 550 770 1 026

B6R003 16 32 49 79 198 427 630 820 1 089 1 299 1 474 1 792 1 964 2 611 3 058

B7R001 0.72 1.5 4.7 9.8 39 138 236 350 466 558 693 936 1 035 1 331 1 587

C1R002 48 90 123 181 373 721 983 1 260 1 614 1 888 2 162 2 523 2 795 3 676 4 503

C2R001 1.5 3.0 4.3 6.9 16 35 49 65 87 101 118 140 157 217 281

C3R002 8.6 17 25 44 112 273 421 587 824 1 027 1 449 1 735 1 936 2 531 3 160

C5R001 1.4 3.4 5.9 12 34 133 237 357 534 680 834 1 116 1 283 1 828 2 489

C5R002 7.1 21 38 72 236 738 1 301 1 973 2 985 3 821 4 700 5 907 6 841 9 951 12 829

C5R003 4.5 11 17 30 89 256 432 628 897 1 120 1 354 1 674 1 923 2 768 3 610

C7R001 18 34 49 76 173 368 527 694 928 1 105 1 282 1 512 1 680 2 188 2 579

C9R002 57 114 178 292 764 1827 2 703 3 611 4 789 5 749 6 591 7 694 8 416 11 115 13 359

D3R002 268 505 689 1 006 2 024 3 847 5 209 6 575 8 377 9 852 11 146 12 941 14 301 18 710 22 868

D6R002 1.2 3.7 7.0 14 56 185 313 404 678 863 1 043 1 254 1 365 1 775 2 113

D7H005 89 191 278 449 1 157 2 596 3 810 5 001 6 742 7 984 9 247 10 871 12 055 15 578 18 238

E1R002 38 90 121 170 325 591 785 978 1 232 1 425 1 619 1 876 2 073 2 732 3 403

H5H004 111 182 235 323 563 972 1194 1 519 1 815 2 051 2 352 2 642 2 903 3 787 4 702

J1R003 1.7 6.6 13 26 112 421 783 1 141 1 753 2 360 2 991 3 760 4 344 6 026 7 288

J2R001 0.66 1.6 2.5 4.3 11 30 46 65 91 113 138 165 184 248 310

J2R003 0.14 0.39 0.78 1.7 6.0 23 44 66 98 129 159 195 227 344 474

J3R001 0.82 2.5 4.9 11 45 203 406 665 1 068 1 409 1 756 2 255 2 582 3 670 4 532

N1R001 2.8 7.9 14 30 104 342 597 898 1 342 1 685 2 037 2 522 2 906 4 024 4 888

N2R001 12 30 48 84 229 618 1 005 1 465 2 129 2 634 3 156 3 896 4 455 6 218 7 743

Q1R001 11 22 29 43 87 174 244 317 418 500 579 689 768 1 065 1 381

Q4R002 7.7 19 28 43 98 212 301 397 531 642 736 874 978 1 319 1 639

Q5R001 12 29 48 86 241 646 1 033 1 441 2 076 2 518 2 962 3 604 4 115 5 486 6 763

S6R002 1.8 5.3 9.0 17 55 162 266 376 511 598 730 935 1 029 1 308 1 657

T2R001 11 27 41 72 199 454 652 852 1 083 1 235 1 374 1 628 1 775 2 236 2 666

U2R001 15 30 40 59 122 239 335 495 694 827 948 1 111 1 237 1 530 1 936

U3R001 2.1 4.8 12 23 78 251 426 614 911 1 143 1 378 1 691 1 875 2 414 2 881

V1R003 52 94 132 201 429 848 1 126 1 447 1 875 2 176 2 367 2 758 3 122 4 007 4 867

V3R003 15 26 36 47 85 147 188 237 290 334 377 436 481 635 794

V6H002 160 272 353 481 841 1 360 1 719 2 064 2 507 2 835 3 159 3 582 3 898 4 927 5 925

W4R001 36 83 129 210 546 1 376 2 150 3 049 4 386 5 500 6 675 8 287 9 536 13 760 17 997

X1H001 20 41 60 92 202 431 628 837 1 129 1 358 1 591 1 904 2 141 2 914 3 630
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Table A4. MAPE ranking for AEP range ≤ 50%

Site Clusters Qave (Ave) Qmdn (Mdn) Qgmn (Gmn)

Ave0 Ave1 Ave2 Mdn0 Mdn1 Mdn2 Gmn0 Gmn1 Gmn2 0 1 2 0 1 2 0 1 2

Qave, including Qmdn, including Qgmn, including Ranking

SD SD, g SD, 
SD*

SD SD, g SD, 
SD*

SD SD, g SD, 
SD*

3 5 1 7 9 4 8 6 2

Σ

186 203 142 237 240 191 238 230 178

A3R002 14% 8.5% 11% 14% 8.8% 13% 15% 11% 11% 7 1 4 8 2 6 9 5 3

B1R001 11% 10% 6.0% 15% 15% 8.5% 14% 13% 5.3% 5 4 2 9 8 3 7 6 1

B2R001 8.8% 6.0% 1.5% 10.0% 7.5% 1.3% 11% 9.2% 1.5% 6 4 3 8 5 1 9 7 2

C1R002 3.0% 3.7% 3.5% 2.6% 3.3% 3.5% 2.9% 3.3% 4.8% 3 8 7 1 4 6 2 5 9

C2R001 5.8% 14% 3.5% 6.1% 14% 5.6% 7.5% 11% 3.1% 4 8 2 5 9 3 6 7 1

C5R002 3.2% 3.9% 5.8% 4.3% 4.5% 6.5% 4.0% 4.2% 8.2% 1 2 7 5 6 8 3 4 9

C9R002 4.8% 5.2% 2.0% 8.6% 9.1% 4.0% 7.4% 7.8% 2.1% 4 5 1 8 9 3 6 7 2

D3R002 2.4% 2.3% 1.7% 2.1% 2.0% 1.9% 2.6% 2.5% 2.9% 6 5 1 4 3 2 8 7 9

D7H005 5.2% 5.6% 2.7% 5.1% 5.3% 3.4% 8.1% 8.4% 2.6% 5 7 2 4 6 3 8 9 1

J1R003 10% 9.2% 9.4% 12% 11% 12% 9.3% 8.9% 8.7% 6 3 5 8 7 9 4 2 1

J2R001 10% 23% 1.4% 11% 21% 6.8% 10% 18% 7.6% 5 9 1 6 8 2 4 7 3

N2R001 3.7% 3.6% 11% 1.9% 1.8% 10% 3.1% 3.0% 15% 6 5 8 2 1 7 4 3 9

Q1R001 9.0% 15% 13% 8.6% 14% 13% 12% 15% 16% 2 7 5 1 6 4 3 8 9

V6H002 6.1% 6.9% 4.2% 10% 11% 4.7% 7.2% 7.6% 4.3% 4 5 1 8 9 3 6 7 2

X1H001 5.0% 6.8% 9.0% 4.8% 6.6% 8.7% 6.7% 7.7% 12% 2 5 8 1 3 7 4 6 9

A2R001 6.5% 5.5% 2.8% 7.1% 6.1% 3.0% 8.6% 8.1% 2.1% 6 4 2 7 5 3 9 8 1

A2R005 11% 18% 14% 9.6% 16% 14% 12% 15% 16% 2 9 5 1 7 4 3 6 8

A4R001 17% 16% 8.1% 22% 21% 11% 18% 18% 6.1% 5 4 2 9 8 3 7 6 1

A8R001 6.1% 4.6% 4.0% 6.8% 5.4% 4.4% 4.9% 4.1% 3.7% 8 5 2 9 7 4 6 3 1

B3R001 2.5% 12% 4.6% 1.6% 11% 4.4% 3.3% 9.1% 8.1% 2 9 5 1 8 4 3 7 6

B6R003 4.1% 2.8% 4.6% 4.5% 3.7% 5.6% 6.4% 5.6% 4.9% 3 1 5 4 2 7 9 8 6

B7R001 17% 10% 16% 18% 13% 17% 19% 16% 17% 5 1 4 8 2 7 9 3 6

C3R002 4.4% 5.8% 4.7% 4.2% 5.6% 6.3% 5.1% 5.4% 4.2% 3 8 4 2 7 9 5 6 1

C5R001 5.7% 6.6% 6.1% 6.8% 7.2% 9.9% 6.6% 6.1% 12% 1 4 3 6 7 8 5 2 9

C5R003 4.0% 4.6% 3.9% 6.8% 5.2% 4.0% 2.0% 1.9% 3.5% 6 7 4 9 8 5 2 1 3

C7R001 1.7% 3.4% 4.9% 2.0% 3.4% 4.7% 1.6% 2.8% 6.4% 2 5 8 3 6 7 1 4 9

D6R002 13% 9.2% 8.8% 13% 9.6% 9.5% 16% 14% 8.8% 7 3 2 6 5 4 9 8 1

E1R002 5.2% 6.2% 4.0% 4.3% 5.2% 4.2% 6.1% 6.7% 5.6% 4 8 1 3 5 2 7 9 6

H5H004 6.9% 7.9% 2.2% 11% 12% 3.3% 8.8% 9.4% 2.8% 4 5 1 8 9 3 6 7 2

J2R003 19% 15% 9.2% 17% 14% 10% 17% 14% 11% 9 6 1 8 4 2 7 5 3

J3R001 16% 16% 11% 12% 11% 16% 9.2% 8.4% 19% 8 6 4 5 3 7 2 1 9

N1R001 9.6% 8.1% 7.3% 9.4% 7.9% 8.2% 9.1% 8.4% 6.1% 9 4 2 8 3 5 7 6 1

Q4R002 2.2% 2.0% 1.7% 4.4% 2.9% 1.7% 2.6% 1.7% 2.6% 5 4 2 9 8 3 6 1 7

Q5R001 6.1% 6.1% 1.2% 6.5% 6.4% 1.4% 6.3% 6.4% 3.5% 5 4 1 9 7 2 6 8 3

S6R002 11% 6.5% 9.0% 14% 11% 11% 13% 11% 8.9% 4 1 3 9 5 7 8 6 2

T2R001 6.5% 6.0% 7.1% 5.7% 5.1% 6.9% 12% 12% 9.0% 4 3 6 2 1 5 9 8 7

U2R001 5.7% 11% 10% 7.5% 14% 9.8% 6.3% 10% 11% 1 7 6 3 9 4 2 5 8

U3R001 11% 9.0% 9.8% 13% 11% 10% 12% 11% 8.3% 7 2 3 9 6 4 8 5 1

V1R003 1.1% 1.3% 1.6% 2.9% 2.7% 3.2% 1.4% 1.3% 1.4% 1 3 6 8 7 9 5 2 4

V3R003 8.8% 15% 4.9% 12% 18% 6.6% 11% 15% 6.5% 4 8 1 6 9 3 5 7 2

W4R001 7.1% 6.4% 2.6% 8.3% 7.9% 3.1% 11% 10% 2.3% 5 4 2 7 6 3 9 8 1


