
Water SA 49(2) 117–125 / Apr 2023
https://doi.org/10.17159/wsa/2023.v49.i2.3956

Research paper

ISSN (online) 1816-7950 
Available on website https://www.watersa.net

117

CORRESPONDENCE
Nisreen Hoosain

EMAIL
nisreen.hoosain@capetown.gov.za

DATES
Received: 29 October 2021
Accepted: 11 April 2023

KEYWORDS
bacterial genera
16S rRNA next-generation 
  sequencing
water matrices

COPYRIGHT
© The Author(s)
Published under a Creative 
Commons Attribution 4.0 
International Licence 
(CC BY 4.0)

SUPPLEMENTARY MATERIAL I
https://watersa.net/article/
view/16030/19874

SUPPLEMENTARY MATERIAL II
https://watersa.net/article/
view/16030/19875

Access to clean water, one of the United Nation’s Sustainable Development Goals, is challenged by an 
increase in the presence of emerging microbial and other contaminants due to urbanization, among other 
factors. Traditionally, the presence of indicator microorganisms is determined using culturing methods. 
However, these classical methods cannot be used to determine the identities of ‘unknown’ bacteria and 
is limited to isolating the culturable state of microorganisms. Thus with culturing, the identities of many 
bacteria, particularly novel or non-culturable, may remain unknown. The use of a DNA-based method,  
16S rRNA next-generation sequencing (NGS), can assist with determining the identities of bacterial 
populations in a water sample. The objective of this 16S rRNA NGS study was to investigate the bacterial 
community composition and diversity in a range of water sources. Water samples comprising of potable, 
surface, ground, marine, aquaculture, rain, wetland and swimming bath water matrices were subjected to 
16S rRNA NGS using the Illumina 16S rRNA Metagenomics analysis pipeline. Operational taxonomic units 
were analysed and the identities of bacterial genera determined. In this study, genera of Acinetobacter, 
Mycobacterium, Pseudomonas, Legionella, Burkholderia, Yersinia, Staphylococcus and Vibrio were spread 
across the water matrices. Alpha (within sample) and beta (between samples) diversities for each bacterial 
community within the tested samples were also determined.
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INTRODUCTION

Approximately 70% of the Earth consists of water. Of this, about 68.7% is not available as it is present 
in glaciers and ice caps, and about 30.1% is in groundwater, while roughly 0.3% is found in surface 
water, which includes rivers, swamps and lakes (National Geographic, 2022). Water is the basis of 
all forms of life and is used for various purposes such as domestic (cooking and cleaning), farming, 
industry and recreation (Evans, 2019). Water is also an important habitat for bacteria and serves as a 
means for their dissemination in nature (Vaz-Moreira et al., 2014). Some bacteria have been found to 
evade disinfection in the drinking water treatment process, either through resistance or via biofilm 
protection (Simoes and Simões, 2013; Li et al., 2017). As a result, access to clean water has been 
adopted as one of the United Nation’s Sustainable Development Goals (United Nations, 2023). In 
2017, the World Health Organisation (WHO) published their Guidelines for Drinking Water Quality 
as a tool to ensure that drinking water of good quality is maintained. Currently in South Africa, 
drinking water is routinely monitored to ensure that it complies with the South African National 
Standard for drinking water (SANS 241:2015, SABS, 2015). However, exposure to waterborne 
bacteria is not limited to potable water.

The human gastrointestinal microbiome, shed in faeces, consists of a mixed population of bacteria, 
some of which are commensals; others exhibit a mutualistic relationship, while some may cause 
harm in the host (Almeida et al., 2019). Worldwide, inadequate human hygiene practices, open 
defecation, lack of access to clean water, and inadequately treated water have notably contributed to 
various opportunistic infections (Carr, 2001; WHO, 2019). Several anthropogenic activities as well 
as human and animal waste can contaminate surface (rivers and streams), coastal and groundwater 
sources (Páll et al., 2013; Itchon and Bruni, 2020). In South Africa, wastewater treatment plants 
treat sewage according to licence agreements instituted by the national Department of Water and 
Sanitation (DWS) to reduce the pollution risk of effluents to the environment. Growing populations, 
loadshedding or rolling blackouts, sewer line failures and blockages, sewer pump station overflows 
and breakages as well as increases in emerging contaminants could have an indirect effect on the 
efficacy of wastewater treatment (City of Cape Town, 2020).

Traditional culture-based techniques determine the presence and number of microorganisms such as 
bacteria in a tested sample. However, the method is limited to culturable microorganisms (Verhille, 
2013), is laborious and less sensitive than molecular techniques such as the quantitative polymerase 
chain reaction (qPCR). Despite being a sensitive technique, qPCR can only detect and quantitate the 
target microorganisms such as bacteria that the reaction has been designed for. Thus, unknown/non-
suspected bacteria may remain undetected. Urban waters have a diverse array of microorganisms, 
many of which are still unknown (Jin et al., 2018), thus identifying them using specific approaches 
such as culturing or qPCR is impractical. This could be overcome with the use of screening molecular 
techniques such as next-generation sequencing (NGS). 16S rRNA NGS has transformed the field 
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of bacterial ecology (Bautista-de los Santos et al., 2016; Brandt  
et al., 2018; Zhang and Liu, 2019). The composition of a bacterial 
population can be determined using the unique 16S rRNA-
encoding DNA sequences in samples and through comparing it 
to all known 16S rRNA sequences in a database to determine the 
presence, abundance and taxonomy level of the bacteria present. 
Alpha (within sample) and beta (between samples) diversity can 
be calculated for each bacterial community giving an indication 
of the diversity and abundance within the bacterial community 
(Bautista-de los Santos et al., 2016).

This study aimed to use 16S rRNA NGS to investigate the 
bacterial composition in an array of filtered water samples such as 
potable, surface, ground, marine, aquaculture, rain, wetland and 
swimming baths. This study also determined the alpha (within 
sample) and beta (between samples) diversity for each bacterial 
community within the tested samples.

METHODS

Sample collection

Water samples were mainly collected from the Cape Metropole 
area and consisted of municipal samples as well as citizen science 
samples. Municipal potable water samples were collected in 
disposable 250mL PET sterile (gamma radiated) bottles with 3% 
sodium thiosulphate; while swimming bath samples were collected 
in pre-autoclaved bottles, transported on ice and immediately 
filtered upon arrival at the laboratory. Citizen science samples 
were collected in a sterile manner at the water source using sterile 
disposable gloves. The stipulated instructions for water filtration 
and storage were supplied with the water collection kit. Each 
water sample (three 60 mL aliquots) was aseptically filtered using 
a syringe-filtering unit (cellulose acetate membranes with 0.2 µm 
pores; GVS Filter Technologies, UK) and touching of the syringe 
and filter attachment points was avoided. All processed filters 
were placed in sterile plastic zip-lock bags and stored at −20°C 
until delivered to CPGR. Frozen filters were transported on ice 
to CPGR and stored at −20°C prior to DNA extraction. Water 
samples were collected (50 from the municipality and 50 from a 
variety of water sources supplied by members of the public, see 
Supplementary Material I) between 2019/10/28 and 2019/11/26. 
In tandem, the municipal samples were subjected to standard 
microbial analyses and assessed according to the required 
guidelines (WHO, 2006; DoH, 2015; SANS, 2015).

DNA extraction and QC

Filters were sterilely removed and DNA extractions carried out 
using the ZymoBIOMICS 96 MagBead DNA Kit (Zymo Research, 
USA). As a negative control, DNA was extracted from a sterile 
filter. DNA quantification was carried out on the GloMax Multi 
Detection System (Promega, USA) using the fluorescent-based 
QuantiFluor dsDNA System (Promega, USA).

Sequencing

In addition to all extracted DNA samples, the ZymoBIOMICS 
Microbial Community DNA Standard (Zymo Research, USA) 
positive control and a no-template control were included in library 
preparation and sequencing. The 16S V3-V4 rRNA amplicons 
were produced according to the Illumina 16S Metagenomics 
Sequencing Library Preparation guide using KAPA HiFi HotStart 
ReadyMix (Roche, USA) and the Nextera XT Index Kit v2 
(Illumina, USA). Libraries were normalised to 5 ng/µL or left at 
their original concentration if lower than 5 ng/µL. Up to 10 ng  
of each sequencing library was pooled. The concentration of 
the final library pool was confirmed by qPCR using the KAPA 
Illumina Library Quantification Kit (Roche, USA) and diluted to a 

concentration of 4nM, denatured, diluted to 5 pM and combined 
with the 10% PhiX control (Illumina, USA). Sequencing was 
performed on an Illumina MiSeq (Illumina, USA) using an 
Illumina MiSeq Reagent Kit v2 (500 cycles).

Data analysis

The Illumina 16S rRNA Metagenomics analysis pipeline 
classified sequencing reads using an Illumina-curated version 
of the Greengenes database (DeSantis et al., 2006) and run on 
all samples using the MiSeq Reporter software version 2.6.2.3 
(Illumina, USA). The resulting summary text files for each sample 
contained operational taxonomic unit (OTU) classifications, 
the related number and percentage of OTU reads. OTUs that 
were not assigned to a taxonomic classification were labelled 
‘Unclassified’, along with the related number and percentage of 
reads. Programming scripts were used to (i) filter OTUs with 
less than 1% of the total number of reads; (ii) sum and list OTUs 
to genus level; while (iii) remaining OTUs with a classification 
higher than genus were labelled ‘Other, level > genus’; (iv) identify 
bacterial genera based on WHO, 2006; USEPA, 2012 and WHO, 
2017 guidelines; and (v) calculate the Shannon Diversity Index 
(H) as follows: H = ∑ − (Pi x ln Pi), where Pi = proportion of the 
sample represented by Genus i (Spellerberg and Fedor, 2003). 
Further data analysis and graphical representation was carried 
out using Excel, the on-line Venn diagram tool (Ghent University, 
2023) or JAMOVI version 1.6.13 (Jamovi, 2023). After testing for 
normality using the Shapiro Wilk test, Welch’s one-way ANOVA 
with a Games-Howell post-hoc test was used to determine 
statistically significant differences between Shannon diversities of 
the different water matrices.

FASTQ files were uploaded to the CyVerse Data Store (Cyverse, 
2023) and analysed using the DNA Subway (Cold Spring Harbor 
Laboratory, 2023) Metabarcoding pipeline with a simplified 
version of the QIIME 2 pipeline (Bolyen et al., 2019). The 
Greengenes database was used for classification. Beta diversity 
was analysed by principal component analysis (PCA) of the 
unweighted UniFrac distance which measures the community 
dissimilarity and incorporates phylogenetic relationships between 
the features (Lozupone and Knight, 2005).

Sequencing reads were deposited on the NCBI Sequence Read 
Archive with Project Number PRJNA775828.

RESULTS AND DISCUSSION

Samples, DNA extraction and library preparation

A mixture of filtered water samples were received from the 
municipality and from members of the public, which included 
samples from an abalone farm, an aquaponics system, boreholes, 
bottled water, household taps, freshwater and marine tanks, 
harbour and sea samples, rainwater tanks, rivers, springs, an 
estuary, a vlei and wellpoints. Municipal potable water and 
swimming bath samples were subjected to standard microbial 
analyses. All municipal samples tested were compliant 
(Supplementary Material I), except for two desalination plants 
which exceeded the SANS241:2015 limits (Supplementary 
Material I). Both swimming bath samples complied with the 
national and WHO operational guidelines for microbial testing 
(Supplementary Material I) (WHO, 2006; DoH, 2015).

DNA concentrations from the extracted water samples ranged 
from <1 ng/µL to 37 ng/µL (Supplementary Material I). To test 
the utility of the DNA across this concentration range, 16S rRNA 
sequencing libraries were produced from all samples and quantified. 
The concentration of the sterile filter negative control library 
was 0.317 ng/µL (Supplementary Material I). Thirteen filtered 
water samples had library DNA concentrations <0.317 ng/µL  
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and were therefore excluded from further analysis. Thus only 87 
of the 100 samples were subjected for further analyses in the study. 
These water samples were divided into 8 categories: potable water, 
surface water (from dams and rivers), groundwater (from springs, 
wellpoints and boreholes), marine water (from sea, harbour and 
marine water tanks), aquaculture samples (from abalone and 
aquaponics systems), rainwater tanks, wetland samples (vlei and 
estuary) and swimming baths (Fig. 1, Supplementary Material I).

Sequencing and data analysis

The MiSeq sequencing run resulted in 7.72  Gb non-indexed 
sequence data. The Q-score distribution plot generated a Q30 
score of 76.0% for the sequencing run, indicating that the quality 
of the sequencing data was acceptable.

The sequencing output was run through Illumina’s 16S rRNA 
metagenomics pipeline. The number of sequencing reads for the 
detected genera based on WHO (2006), EPA (2012) and WHO 
(2017) were identified (Supplementary Material I). Supplementary 
Material II lists the genera identified in each water sample. A very 
low number of reads was obtained for the no-template and sterile 
filter negative controls (885 and 7 540 filtered reads, respectively). 
The percentage of filtered reads classified at the genus level with 
high confidence for the ZymoBIOMICS positive control are 
shown in Fig. 2. The ZymoBIOMICS Microbial Community 

DNA Standard consists of 8 bacterial genera and all 8 genera were 
detected, ranging from 3.9% of filtered total reads (for Salmonella 
spp.) to 16.2% of filtered total reads (for Bacillus spp.).

Bacterial diversity of varied water sources

The Shannon Diversity Index was used to calculate an overall score 
of diversity for each sample at the genus level (Supplementary 
Material I). To compare diversity ranges within the eight water 
categories, the mean Shannon Diversity Index was calculated  
(Fig. 3). The potable water category had the lowest average 
Shannon diversity. This was significantly lower than rain and 
surface water, whereas the rain tank category (reflecting samples 
harvested from rooves and stored prior to purification) had the 
highest Shannon diversity (Fig. 3).

Beta diversity of the sample types was determined using an 
unweighted UniFrac PCA. This measured bacterial community 
differences between the tested samples (Lozupone and Knight, 
2005). The majority of the potable samples, together with the 
swimming bath samples, broadly separated from the other sample 
types based on the first component contributing to the variation 
(13.8% of the variation), whereas the rain tank and the majority of 
the ground and surface water samples grouped further from the 
other sample types based on the second component (5.338% of 
the variation) (Fig. 4).

Figure 1. Pie chart showing the percentage composition for 8 water categories included in the study 

Figure 2. Number and percentage of reads corresponding to the eight genera found in the ZymoBIOMICS Microbial Community DNA positive 
control
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Within the surface water category, 6 river samples were collected 
within a few days of each other from clearly defined river 
crossings along the Otter Trail, a hiking trail along the Garden 
Route coast of South Africa. This dataset offered an opportunity 
to study the diversity of different genera in nearby rivers over a 
very short time. Comparison of the genera identified for each 
sample (Supplementary Material II, Fig. 5) indicated that there 
was very little overlap between the different samples. This 
suggests that the composition of the bacterial populations in 
these river samples may be influenced by distance to the river 
mouth, localised geology and upstream farming practices 
(Doherty et al., 2017; Chen et al., 2018).

Identification of bacterial genera

Filtered sequencing data were further analysed to determine 
the genera based on WHO (2006), USEPA (2012) and WHO 
(2017) guidelines, in each water category (Table 1). Sequencing 
reads corresponding to 8 genera (Acinetobacter, Mycobacterium, 
Pseudomonas, Legionella, Burkholderia, Yersinia, Staphylococcus 

and Vibrio) were detected in at least one matrix (Table 1; WHO, 
2017). In addition, sequencing reads corresponding to the genera 
Streptococcus, Clostridium, Microcyctis, and Arcobacter were 
detected in more than one water matrix (Table 1; WHO, 2006; 
USEPA, 2012).

Currently, the Acinetobacter genus consists of 74 different species 
(LPSN, 2022a; Parte et al., 2020), is considered to be ubiquitous 
in nature, and its presence in sewage, soil, water, food and clinical 
environments is noted (Towner, 2006; WHO, 2017). Acinetobacter 
spp. have been linked to enhanced biological phosphorus removal 
from wastewater (Wagner et al., 1994; Yang et al., 2015) and have 
bioremediation potential (Paisio et al., 2016; Al-Hadithi et al., 2017) 
suggesting a further possibility for their presence in waterbodies. 
To date, Acinetobacter spp. have been found in potable water 
(Carvalheira et al., 2021), rivers (Kittinger et al., 2018), wastewater 
(Yang et al., 2015), groundwater (Pindi et al., 2013) and seawater 
(Yoon et al., 2007). In this study, Acinetobacter was detected in 4 
potable water samples (2 tap and 2 desalination water samples) and 
1 surface (river) water sample (Table 1; Supplementary Material I).

Figure 3. Box plots of Shannon diversity for the different sample types or sources. Statistical significance is indicated by *p < 0.05; **p < 0.005; 
***p < 0.0005.

Figure 4. Unweighted UniFrac beta diversity principal component analysis showing grouping of the sample types
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The Mycobacterium genus consists of 3 groups: (1) obligate 
pathogens, (2) potential pathogens and (3) saprophytes 
(Vaerewijck et al., 2005). Group 1, the M. tuberculosis complex 
(MTC), causes disease in humans and animals and is generally 
not found in the environment. On the other hand, Group 2 
(potential pathogens) consists of the Mycobacterium avium 
complex (MAC) (Hunter, 1997) and is found in terrestrial and 
aquatic environments. In comparison, Group 3 (saprophytes) are 
rarely pathogenic (Vaerewijck et al., 2005). Groups 2 and 3 are 
also known as non-tuberculosis/atypical Mycobacterium (NTM), 
are naturally occurring in a range of water environments, and 
are able to grow and persist if conditions are suitable (Le Dantec  
et al., 2002; WHO, 2017). To date, there are 195 validly published 
species of Mycobacterium (LPSN, 2022b). In our study, the genus 

Mycobacterium was identified in 1 sample in each of the following 
categories: aquaculture, marine, surface, wetland and swimming 
bath; as well as in 5 potable water samples (Table 1; Supplementary 
Material I). These findings are in agreement with international 
studies where Mycobacterium was found in aquaculture 
(Yanong and Pouder, 2010; Gcebe et al., 2018; Mugetti et al., 
2020; Mataragka et al., 2022), marine environments (Hashish 
et al., 2018; Mataragka et al., 2022), surface water (Eun-Sook  
et al., 2008), wetlands (Kopecky et al., 2011; Tortone et al., 2018), 
swimming baths (Torvinen et al., 1999; D’Ancona et al., 2014) 
and extensively found in potable water sources worldwide (Bailey  
et al., 1970; Von Reyn et al., 1993; Schwartz et al., 1998; Vaerewijck 
et al., 2005; Tortone et al., 2018; Lin et al., 2020). Furthermore, 
chlorine disinfection has been found to be ineffective for 

Figure 5. Venn diagram showing overlap of unique genera present in the Jerling, Geelhout, Klip, Kleinbos, Elandsbos and Bloukrans Rivers  
found along the Otter Trail along the Garden Route coast of South Africa. Numbers are unique genera, while coloured shapes represent rivers: 
Jerling = blue, Geelhout = red, Klip = turquoise, Kleinbos = green, Elandsbos = yellow and Bloukrans = brown.

Table 1. Bacterial genera* detected in various water categories

Genus Water source

Potable
(44)

Ground
(11)

Surface
(15)

Wetlands
(2)

Marine
(5)

Aquaculture
(4)

Rainwater
tanks (4)

Swimming
baths (2)

Acinetobacter* 4 0 1 0 0 0 0 0

Mycobacterium* 5 0 1 1 1 1 0 1

Pseudomonas* 3 0 5 0 0 0 0 1

Legionella* 12 1 2 1 1 2 1 0

Burkholderia* 0 0 3 0 0 0 0 0

Yersinia* 0 0 1 0 0 0 0 0

Staphylococcus* 0 0 0 0 0 0 0 2

Vibrio* 0 0 0 0 0 2 0 0

Streptococcus* 0 1 3 0 0 0 0 0

Clostridium* 1 1 2 0 0 0 0 0

Microcystis* 1 0 1 1 0 0 0 0

Arcobacter 2 1 3 0 2 2 0 0

*Genus list was compiled using WHO (2006), USEPA (2012) and WHO (2017) guidelines
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Mycobacterium in potable water samples, with the presence of 
biofilms adding an extra mechanism for its persistence in water  
(Simoes and Simões, 2013; Li et al., 2017).

Pseudomonas are free-living micro-organisms and ubiquitous 
in nature. The genus is found in moist environments, rivers and 
soils, therapy pools and surrounding areas, and is often associated 
with biofilm production (Wingender and Flemming, 2011; Koeck 
et al., 2018). To date, there are 310 validly published species of 
Pseudomonas (LPSN, 2022c). In our study, the genus Pseudomonas 
was detected in 3 potable water samples, 1 swimming bath and 5 
surface water samples, 4 of which were found along the Otter Trail 
(Table 1; Supplementary Material I).

Of interest, 20 samples (23%) in this study contained Legionella. 
Twelve of these were potable water samples (2 from water 
treatment plants and 10 from distribution points or taps) (Table 1;  
Supplementary Material I). This is possible as Legionella can grow 
in water, pipe biofilms and soil. High levels of biodegradable 
organic carbon, warmer temperatures, stagnant water, low residual 
chlorine concentrations and biofilms may further exacerbate their 
growth in water (WHO, 2017). Other water categories where 
Legionella were detected in our study included: 2 samples from 
an abalone farm and 1 sample each from a dam and river (surface 
water), spring, wetlands, marine, and rainwater tank (Table 1; 
Supplementary Material I). Legionella is an environmental 
microorganism and may proliferate in suitable conditions (WHO, 
2017). Currently, there are more than 58 different Legionella spp. 
with more than 70 serotypes, (Ditommaso et al, 2021; Legionella 
Control International Ltd., 2021).

Burkholderia was detected in 3 river samples; 2 of which were 
along the Otter trail (Table 1; Supplementary Material I). 
Burkholderia was co-detected with Yersinia in 1 river sample. The 
principle reservoirs of Yersinia spp. are domestic and wild animals 
but they can also be found in sewage and polluted waters (WHO, 
2017). In 2015, a study by Prentice indicated that a species of 
Yersinia could enter the viable but non-culturable state in water 
and could also persist in soil, thus emphasizing the importance for 
molecular monitoring over culturing for this genus. The presence 
of Burkholderia spp. has been documented in soil and muddy 
water in tropical regions (WHO, 2017), coastal environments 
and mussels (Maravić et al., 2012), a water treatment plant (Inglis 
et al., 2000) and also maintained its culturable state after several 
years’ incubation in distilled water (Wuthiekanun et al., 1995).

In this study, Staphylococcus was detected in 2 swimming bath 
samples (Table 1; Supplementary Material I). Staphylococci are 
ubiquitous in the environment and commonly found in mucous 
membranes and on human and animal skins (Leroy et al., 2016). 
As a result of its presence on the skin, it can be transferred to 
swimming baths, recreational water and spa pools (Koeck  
et al., 2018). Although this microorganism has been detected in 
drinking water, there is no evidence that it can be transmitted 
through water consumption (WHO, 2017). Staphylococci are 
occasionally found in the gastrointestinal tracts of humans; thus 
its presence in sewage is also possible (WHO, 2017).

There are currently 138 validly published species of Vibrio (LPSN, 
2022d). These species are abundant in aquatic environments as 
well as in the organs and/or tissues of marine algae and animals, 
including corals, sponges, bivalves, abalone, shrimp, fish, squid, 
and zooplankton (Nicolas et al., 2002; Cai et al., 2006; Pichon 
et al., 2013; Economopoulou et al., 2017), which may negatively 
impact the infected species and may also have a zoonotic potential 
(Economopoulou et al., 2017). In our study, the Vibrio genus was 
detected in 2 aquaculture samples where abalone was farmed.

Although Escherichia spp. sequencing reads were not reported in 
various water samples of this study (Table 1), it was reported in 

the ZymoBIOMICS control (Fig. 2). Escherichia spp. and Shigella 
spp. are closely related and belong to the Enterobacteriaceae 
family (Devanga Ragupathi et al., 2017). Of the municipal samples 
collected, one treated desalination plant sample (ASV041) contained 
1 CFU/100 mL E. coli (Supplementary Material I). Additionally, 
poor correlation between 16S microbiome sequencing data and 
culture-based methods may reflect the limits of detection using 
16S sequencing, as low numbers of sequencing reads associated 
with low concentrations of micro-organisms in communities may 
be removed during down-stream data analysis steps; alternatively 
deeper sequencing may be needed to detect micro-organisms in 
very low abundance (Hamady and Knight, 2009; Schang et al. 2016).

Intestinal enterococci are also used to monitor water quality (WHO, 
2017). They consist of 2 genera, Enterococcus and Streptococcus, and 
are used as indicators of faecal pollution. Intestinal enterococci are 
highly prevalent in sewage and sewage spills as well as human and 
animal waste. They survive for longer periods in water compared 
to E. coli, and are resistant to chlorination and dry conditions 
(WHO, 2017). Limayem et. al. (2019) found Streptococcus to 
be the second-most predominant genus in influent and treated 
effluent samples collected at reclamation facilities in the USA. 
Streptococcus were also found in the Nile River (Goja, 2013) 
as well as in a groundwater sample in South Africa (Ateba and 
Moloantoa, 2013). In our study, Enterococcus was not detected but 
Streptococcus was identified in 3 river samples and 1 groundwater 
sample (Supplementary Material I).

Clostridium spp. are ubiquitous in nature and often found in the 
gastro-intestinal tracts of humans and animals. These species can 
enter surface water systems via runoff in agricultural settings or 
through treated wastewater effluents (Fourie, 2017). The genus 
Clostridium was detected in 4 samples in this study, consisting of 
2 surface (river), 1 groundwater and 1 potable water sample (Sup-
plementary Material I, II); these surface and groundwater samples 
also contained Streptococcus spp. The two surface water samples 
(ASV005 and ASV006) were submitted with a note of ‘may con-
tain sewage’, suggesting that the presence of both Streptococcus 
spp. and Clostridium spp. may be linked to faecal contamination, 
while an explanation for the presence of both genera in a single 
groundwater sample (ASV016) in our study is unclear.

Cyanobacteria are found in a range of environments, including 
hot springs, soil, artificially illuminated cave systems, ice layers 
in polar regions as well as in marine, brackish and freshwater 
systems (Harding and Paxton, 2001; WHO, 2017; USEPA, 2020). 
These aquatic organisms produce pigments and generally occur 
in low numbers in most surface waters; however, eutrophication 
can result in bloom development. Microcystis is a genus of 
freshwater cyanobacteria and is capable of causing harmful/toxic 
as well as non-toxic blooms in ecosystems globally (Park et al., 
2018; Pérez-Carrascal et al., 2019). In our study, Microcystis was 
detected in 1 wetland, 1 potable water (citizen science sample) 
and 1 surface water (raw sample: water treatment plant) sample 
(Supplementary Material I, II). All samples were colourless and 
odourless, suggesting low growth of Microcystis. No sequencing 
reads corresponding to other cyanotoxic bacteria were detected.

Arcobacter, a genus of emerging concern, has been associated 
with 3 waterborne outbreaks and its persistence in wastewater 
is suggestive of an ecological reservoir (Banting and Figueras 
Salvat, 2017). In our study, Arcobacter was detected in 2 potable, 
3 surface, 2 marine, 1 ground and 2 aquaculture water samples, 
all of which were citizen science samples. This finding is not new 
as Arcobacter spp. have been identified in several water sources 
worldwide. These include: tap and river water in Asia (Marita  
et al., 2004) and Europe (Moreno et al., 2003), seawater in Spain 
(Collado et al., 2008), groundwater in South Africa and Turkey 
(Diergaardt et al., 2004; Ertas et al., 2010), and it has also been 
isolated from abalone in Japan (Mizutani et al., 2019).
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Importantly, the viability status of the microorganisms detected  
in our study was not determined and was not part of the scope 
of the current study. Rather, it was used to determine the 
bacteriological composition and diversity within and among the 
tested water samples.

CONCLUSION

This 16S rRNA amplicon microbiome sequencing study 
identified genera which included Acinetobacter, Mycobacterium, 
Pseudomonas, Legionella, Burkholderia, Yersinia, Staphylococcus, 
Vibrio, Streptococcus, Clostridium, Microcystis and Arcobacter. In 
addition, this study uncovered a wide range of bacterial diversity 
at the genus level, both within and between the different water 
types, with municipal treated potable samples and samples from 
rain tanks displaying the lowest and highest within-sample type 
diversity, respectively. Of note, the limit of detection of 16S NGS 
compared to culture techniques is also an important factor to 
consider as the indicator micro-organism, E. coli, could be present 
in lower concentrations compared to the more abundant genera. 
Thus E. coli may not be detected with NGS but could be cultured 
using selective media or detected using a rapid technology like 
IDEXX Colilert.
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