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Water distribution systems are an integral part of the economic infrastructure of modern-day societies.
However, previous research on the design optimization of water distribution systems generally involved
few decision variables and consequently small solution spaces; piecemeal-solution methods based on
pre-processing and search space reduction; and/or combinations of techniques working in concert. The
present investigation was motivated by the desire to address the above-mentioned issues including those
associated with the lack of high-performance computing (HPC) expertise and limited access in developing
countries. More specifically, the article’s aims are, firstly, to solve a practical water distribution network design
optimization problem and, secondly, to develop and demonstrate a generic multi-objective genetic algorithm
capable of achieving optimal and near-optimal solutions on complex real-world design optimization problems
reliably and quickly. A multi-objective genetic algorithm was developed that applies sustained and extensive
exploration of the active constraint boundaries. The computational efficiency was demonstrated by the small
fraction of 102* function evaluations relative to the size of the solution space. Highly competitive solutions
were achieved consistently, including a new best solution. The water utility’s detailed distribution network
modelin EPANET 2 was used for the hydraulic simulations. Therefore, with some additional improvements, the
optimization algorithm developed could assist practitioners in day-to-day planning and design

INTRODUCTION

Water distribution systems, as part of the indispensable economic infrastructure of modern societies,
should be designed, maintained and operated in an economical and sustainable way. Multi-objective
evolutionary optimization algorithms are widely used for design purposes, as they yield a range
of efficient candidate solutions that provide the decision makers with the vital flexibility that is
needed when appraising and selecting the final solutions (Li et al., 2015). Other advantages of multi-
objective evolutionary optimization algorithms are that the objective and constraint functions of
the optimization problem need not be differentiable or continuous, discrete and mixed decision
variables and non-convex problems can be handled relatively easily and, by deploying a population
of candidate solutions simultaneously, the chances of achieving the global optimal or near-optimal
solutions are greatly increased.

Evolutionary optimization algorithms operate on populations of solutions that may include both
feasible and infeasible solutions. To address constraint violations when optimizing water distribution
systems, penalty-based methods have been applied widely (Broad et al., 2005; Ostfeld and Tubaltzev,
2008). The major drawback of the penalty-based approaches is that additional case-specific parameters
are required (Ayvaz and Kentel, 2015; Ostfeld and Tubaltzev, 2008; Kang and Lansey, 2012), the
calibration of which is generally very challenging (Moosavian and Lence, 2017; Siew et al., 2014; Saleh
and Tanyimboh, 2013, 2014; Siew and Tanyimboh, 2012a; Dridi et al., 2008; Prasad and Park, 2004).

Thus, some of the constraint-handling methods in the literature are: (i) penalties imposed on
infeasible solutions to reduce their fitness; (ii) constraint dominance tournaments that, essentially,
impede the survival and propagation of infeasible solutions (Deb et al., 2002); (iii) replacement of
infeasible solutions with new solutions created randomly (Tersi et al., 2015); (iv) repair of infeasible
solutions (Chootinan and Chen, 2006); and (v) stochastic ranking that involves binary tournaments
and probabilistic penalty functions (Runarsson and Yao, 2000). While constraint dominance
tournaments may have a strong practical appeal based on the ease of implementation, they tend to
reduce diversity in the population of candidate solutions too quickly (Liu et al., 2010; Eskandar et al.,
2012; Sheikholeslami and Talatahari, 2016), which, in turn, impedes the progress of the optimization
through lack of diversity in the gene pool. Repairing infeasible solutions and designing penalty
functions are, generally, extremely challenging, while replacing infeasible solutions is wasteful
(Oyama et al., 2007; Ray et al., 2009; Woldesenbet et al., 2009; Yen, 2009), as the information content
of the infeasible solutions is not harnessed.

Furthermore, when applied to real-world problems, multi-objective evolutionary optimization
algorithms commonly require computationally intensive simulation models that are time-consuming
to execute. Moreover, for complex optimization problems such as the design of real-world water
distribution networks, the amount of time needed for the simulations can be prohibitive as, typically,
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the number of function evaluations or simulations required is very
large. Thus, a major challenge concerning evolutionary algorithms
in the context of the design optimization of water distribution
systems is that the algorithms are computationally demanding
and particularly difficult to implement when applied to large real-
world networks with multiple operating conditions that generally
require dynamic or extended period simulation (Van Zyl et al,,
2004; Broad et al., 2010; Kang and Lansey, 2012; Sheikholeslami
and Talatahari, 2016).

Even with the latest powerful workstations, a single execution of
an evolutionary optimization algorithm may require many days
or several weeks or more, depending on the problem at hand.
Moreover, the solution space of the optimization problem is
frequently enormous and, consequently, instances of premature
convergence are common. Therefore, to be confident that any
solutions achieved are reasonably optimal, the algorithms are
normally executed many times. This is the reason that HPC
(high-performance computing) facilities are frequently used to
overcome the problem (Barlow and Tanyimboh, 2014; Seyoum
et al., 2015; Tanyimboh and Seyoum, 2016). However, most
researchers and practitioners lack access to HPC facilities and the
necessary expertise, which holds true in South Africa also.

One way of addressing this difficulty involves using parallel
algorithms, which inherently are computationally more efficient
(Trobec et al., 2009). Two common approaches for parallel
algorithms are the controller-worker and island models. The
controller-worker model is popular due to the relative ease of
implementation (Alba, 2005; Castillo et al., 2008; Cantu-Paz, 2000).
It employs a single population with the fitness evaluation carried
out in parallel by assigning a fraction of the population to different
processors. It is very efficient, particularly for problems in which
the fitness evaluation is computationally demanding (Cantu-Paz
and Goldberg, 2000), and achieves significant speed-up, if the
communication costs are small when compared to the computation
costs (Kumar et al., 2006; Cantu-Paz and Goldberg, 2000).

In the island model, the candidate solutions are divided into sub-
populations that evolve independently and may exchange some
solutions that are called migrant solutions occasionally. When
designed well, it can solve very complex problems for which the
serial algorithm performs poorly regardless of the search duration
(Back et al., 1997; Tang et al., 2007). However, the island model is
much more difficult to design (Cantui-Paz and Goldberg, 2000),
and its practical application is not straightforward as it involves
several parameters that require calibration, e.g., the size of the sub-
populations, frequency of migration, number of migrant solutions
and their destinations, etc. (Artina et al., 2012). It is worth noting
again that evolutionary optimization algorithms commonly apply
penalties to address constraint violations (Piratla and Ariaratnam,
2012; Moosavian and Lence, 2017). Moreover, the development
and calibration of the penalty functions on a case-by-case basis is
particularly challenging (Dridi et al., 2008; Gibbs et al., 2015). This
increases the overall complexity of the calibration effort further,
when considered alongside the parameters of the underlying
evolutionary algorithm that generally require calibration also.

In any case, applications of parallel evolutionary optimization
algorithms in the design of water distribution systems are
surprisingly lacking in the literature. Moreover, applications of
evolutionary optimization algorithms that address complex design
problems based on real-world water distribution systems are also
lacking. Such problems often involve large networks, enormous
solution spaces, time-varying demands, multiple operating
conditions, extended period simulation, etc. Indeed, Kang and
Lansey (2012) observed that studies on the optimization of water
distribution systems in the preceding three decades had focused
mainly on the applications of new optimization techniques
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(e.g. Ostfeld and Tubaltzev, 2008; Wu et al., 2013; Moosavian and
Lence, 2017) to relatively simple systems. For example, Ewald et
al. (2008) applied an island model to optimize the locations of
booster chlorination stations. Artina et al. (2012) employed both
the controller-worker and island models to optimize the design
of a water distribution network. They observed that frequent
exchanges of good solutions improved the results. Barlow and
Tanyimboh (2014) used the controller-worker model to execute
a single optimization run while the island model performed
multiple independent optimization runs simultaneously.

Following Walski (1995), Kang and Lansey (2012) characterised
three levels of water supply and distribution planning and
design as follows. The master planning scale (Level 1) considers
large-scale infrastructure that includes water treatment plants
and major trunk mains (e.g. the New York City Water Supply
Tunnels and Hanoi network in the literature). The second level
of planning and design (Level 2, e.g., the hypothetical Anytown
network in the literature) considers the transmission mains that
distribute water between and within water supply zones (i.e.
demand management areas or pressure zones). The third level of
planning and design (Level 3) involves the distribution network
that supplies individual households. Kang and Lansey (2012) also
emphasised that, although water distribution network models
having thousands of pipes were the focus of network modelling or
simulation (as distinct from optimization) in the water industry
nowadays, the distribution network (i.e. Level 3) generally has not
been considered in design optimization studies, as the problems
are extremely difficult to solve.

Several examples illustrate the point further. Kang and Lansey
(2012) optimized the diameters of a water distribution network
using steady state rather than dynamic simulation to solve the
problem in two stages by applying a heuristic technique followed
by a genetic algorithm. It is important to note that the optimized
solutions they achieved using the heuristic technique were then
used as the starting point for the genetic algorithm. Price and
Ostfeld (2016) and Stokes et al. (2016) optimized pump scheduling
only, without optimizing the diameters of the pipes. Also, several
studies (e.g. Barlow and Tanyimboh, 2014, etc.) have optimized
the diameters of the Balerma irrigation network using hybrid
algorithms. Hybrid algorithms combine multiple optimization
strategies, as in Sheikholeslami and Talatahari (2016), for example.
Finally, Moosavian and Lence (2017) applied a non-dominated
sorting differential evolution algorithm to hypothetical networks
only. Thus, the above-mentioned investigations mainly considered
problems that were relatively easy to solve. The formulations
generally involved: (i) few decision variables and consequently
small solution spaces; (ii) piecemeal solution methods based on
pre-processing and search space reduction (Abdy Sayyed et al.,
2019); or (iii) combinations of techniques working in concert.

The present investigation was motivated by the desire to address
the above-mentioned weaknesses, including issues associated
with limited HPC expertise and access in developing countries,
e.g., South Africa. Accordingly, this article considers the multi-
objective evolutionary design optimization of water distribution
networks. The multi-objective genetic algorithm developed
utilises extended period simulation based on a pressure-driven
analysis model through which the constraints of the optimization
problem are addressed seamlessly, efficiently and reliably. More
specifically, the article’s aims are, firstly, to solve a practical water
distribution network design optimization problem and, secondly,
to develop and demonstrate a generic multi-objective genetic
algorithm capable of achieving optimal and near-optimal solutions
on complex real-world design optimization problems reliably and
quickly. Moreover, the quantified evaluation of the algorithm’s
performance is extended herein to cover not just the least-cost
feasible solution but, also, the whole Pareto-optimal front.
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MATERIALS AND METHODS
Design optimization model

The algorithm developed is based on a multi-objective evolutionary
optimization algorithm in Siew and Tanyimboh (2012a). A key
feature of the algorithm is that it exploits feasible and infeasible
individuals in the population of candidate solutions equally with
respect to constraint violations using pressure-driven analysis.
Essentially, the proposed formulation provides a level playing field
for all the feasible and infeasible candidate solutions. This has the
added advantage of promoting greater diversity among the candidate
solutions by allowing non-dominated infeasible solutions to survive
until the end of the optimization process. Thus, an enhanced and
sustained boundary search also takes place through the development
and evolution of sub-populations of near-optimal feasible and
infeasible solutions (Saleh and Tanyimboh, 2013, 2014, 2016).

Pressure-driven analysis of water distribution networks considers
the relationship between the flow and pressure at a demand node
(Tanyimboh et al., 1997). Thus, an infeasible solution does not
satisfy the nodal pressures and demands in full and the shortfall
in the flow delivered provides a direct measure of its infeasibility.
In this way, the hydraulic simulations address the minimum node
pressure constraints efficiently, reliably and seamlessly. A pressure-
driven extension of EPANET 2 (Siew and Tanyimboh, 2012b)
was adopted.

Moosavian and Lence (2017) reported that the non-dominated
sorting differential evolution (NSDE) algorithm outperformed all
other algorithms on randomly generated hypothetical networks
as opposed to real-world and benchmark networks in the
literature. However, NSGA II (Deb et al., 2002) achieved better
results than NSDE at high cost levels on benchmark networks.
Indeed, NSGA 1II is the most popular multi-objective evolutionary
optimization algorithm. Moosavian and Lence (2017) reported
that it has weaknesses, such as unstable and slow convergence
and difficulties in escaping from local optima. By contrast, the
methodology in Siew and Tanyimboh (2012a) solved various
benchmark problems in the literature successfully (Siew et al.,
2014; 2016) and was highly competitive compared to all other
algorithms, considering the quality of the solutions achieved and
computational efficiency.

Minimising the total capital and operating cost and maximising
hydraulic performance are the conflicting objectives of the
optimization model. The decision variables typically include pipe
diameters that are selected from a set of commercially available
discrete pipe sizes. Depending on the nature of the optimization
problem, other decision variables and/or components (e.g. pumps
and tanks) may be included readily if required (Siew et al., 2016).
It was assumed that the system’s topological properties were
pre-specified and thus topological optimization (Phan et al., 2013;
Saleh and Tanyimboh, 2013; 2014) was not considered.

The cost objective function was:
K =xls i=l..Np O]

where Np is the population size; i and (i) refer to i solution;
and y, is the ratio of the cost of solution i to the cost of the most
expensive solution in the current generation. Thus:

G

=+t —— i=1..
Max(Ci;i:I,...,Np)’ =h

2 ., Np (2)

with C, the cost of solution i.

The hydraulic performance objective function was:
4
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For solution i, o, represents the hydraulic performance property
that is the ratio of the available flow to the required flow, for time
step j of duration ¢. The function f, is thus the time-weighted
mean value of the demand satisfaction ratio (Ackley et al., 2001)
of the network for an operating cycle.

The exponent values of 2 and 4 in Eqs 1 and 3, respectively,
were derived empirically in Siew and Tanyimboh (2012a). Both
objective functions take values from zero to 1.0. A solution that has
a demand satisfaction ratio that is less than 1.0 is infeasible in the
sense that it cannot satisfy all nodal demands in full. Conversely,
the demands are satisfied in full if the distribution network
delivers the required flow and pressure in full (Germanopoulos,
1985).

The constraints of the design optimization problem were the
equations for conservation of mass and energy, and specified
minimum pressures at the demand nodes and fire hydrants.
The energy and mass conservation equations were satisfied in
the hydraulic simulation model. The minimum node pressure
constraints were addressed in the hydraulic performance function
f,. Accordingly, all candidate solutions were rated using Pareto-
dominance based on the actual cost and hydraulic performance
only, without recourse to any additional constraint-handling
procedures.

Solution quality and optimality measure

The algorithm’s ability to provide optimal solutions reliably was
investigated. The generational distance parameter (Veldhuizen and
Lamont, 1998) may be used to quantify the average distance between
a given set of non-dominated solutions and the Pareto front. Thus:

Np

1/2
1 2
GD=— d; 4
W {Zl ; ] 4)
where GD is the generational distance; and Np is the number of
non-dominated solutions. d, is the distance in the objective space
between the i non-dominated solution and the nearest solution of
the Pareto-optimal set; i.e.:

1/2
2 ) N2
%—Aﬁn{EXﬁy—ﬁyﬁ j=L.Npo |; i=L..Np (5)

m=1

where £ is the value of the m™ objective function for the i non-
dominated solution; £ is the value of the m™ objective function
for the j* Pareto-optimal solution; and N, is the number of
solutions in the Pareto-optimal front.

The optimized solutions achieved were normalised for the results
appraisal as follows, to ensure that subsequent comparisons based
on Eqs 4 and 5 would be equitable. Accordingly:

; fz _ min
Jn, =W; m=1,2; i=1,.., Np (6)
m m
in which the function fn normalises the function f; m and i refer
to the m™ objective function and i* solution, respectively; ‘max’
and ‘min’ refer to the largest and smallest values of f, achieved,
respectively.

Computational solution and software implementation

The optimization problem was solved with the genetic algorithm
developed. Binary coding was used for the pipe diameters as the
decision variables. The genetic operators used comprised single-
point crossover, single-bit mutation and binary tournament
selection for crossover. Figure 1 summarises the parallel computer
program developed in C++ using Message Passing Interface
(MPI) routines. Microsoft HPC pack 2008 was used to run the
program in Microsoft Visual Studio (version 2010).
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The crowding distance parameter in Fig. 1 is a measure of the
spatial density of the solutions in the objective space, that is used
to help achieve a relatively uniform distribution of the solutions
in the Pareto-optimal front (Deb et al., 2002). Thus, when
the number of solutions in the leading non-dominated front
exceeds the population size, the crowding distance is applied,
as an auxiliary criterion besides the non-domination rank, to
help reduce the over-representation of the solutions from the
relatively more densely populated regions of the solution space. In
the implementation of the crowding distance herein, to enhance
further the boundary search properties of the algorithm, 30% of
the solutions in the next generation comprised the least expensive

feasible solutions while the remaining 70% were obtained using
the crowding distance (Siew and Tanyimboh, 2012a).

The controller-worker model was adopted as the fitness evaluation
that involved extended period simulation was computationally
very demanding and communication costs were small compared
to the computation costs (Cantu-Paz and Goldberg, 2000; Kumar
et al.,, 2006). All the processors including the controller processor
shared the fitness evaluation of the child population equally
(Fig. 1). Additionally, the controller processor performed the
operations of selection, crossover and mutation along with the
rest of the procedures of the algorithm.

Yes

Initialize MPT

Get the number of processors

Get the rank of each processor

Controller pr

v

Generate a random parent population of size Np

h

Evaluate and assign fitness to solutions

v

Obtain non-domination rank and crowding distance

Y

»I Select solutions for mating

Y

(Rank =

| Create offspring via crossover and mutation (size Np)

Send child population to worker proce
evaluation and fitness calculation

Evaluate and assign fitness to child solutions

Collect fitness values from worker processors

Receive child population from controller
or evaluation and fitness calculation

Evaluate and assign fitness to child solutions

Send fitness values to controller processor

| Combine parent and child solutions (size 2Np)

A 4

| Obtain non-domination rank and crowding distance

.4

Number of solutions in the leading
non-dominated front exceeds Np?

Select Np solutions based on non-domination
rank and crowding distance

Keep 0.3Np of the least-cost feasible
solutions and select 0.7Np solutions
based on crowding distance

Tenmnination
condition met?

Finish

Shut down MPI

Figure 1. Details of the parallel optimization algorithm. The coefficients (0.3 and 0.7) that modify the application of the crowding distance

operator are empirical.
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lllustrative example
Network data and problem specifications

The example presented here for demonstration purposes is based
on the water distribution network in Fig. 2 that is part of a water
distribution system in the UK. The calibrated EPANET 2 network
model and GIS database having the network and operational data
were obtained from the water utility. The respective averages of
the heads at the five supply nodes R1 to R5 were: 130.33, 129.94,
129.85, 129.88 and 130.32 m. The water distribution network
comprised 251 pipes, 228 demand nodes of which 29 were fire
hydrants, 5 variable-head supply nodes, and there were 3 demand
categories as detailed in Seyoum and Tanyimboh (2014). The
calibrated model of the network comprised 31 h of operation
with a hydraulic time step of 1 h and a fire demand at a different
location in each hour of operation except during the first and last
hour. The pipe data included 28 pipe sizes and their respective
costs per unit length, etc.

The minimum residual head required was 20.0 m for all demand
nodes and 3.0 m for all fire hydrants, for a fire flow of 8.0 L/s.
Velocity constraints were not included in the optimization
model, as they were not prescribed. However, based on the
British Standard for Water Supply Requirements for Systems and
Components Outside Buildings (BS EN 805:2000), velocities of 0.5
to 2.0 m/s may be appropriate. In special circumstances, e.g., fire
flows, velocities of up to 3.5 m/s may be acceptable. The velocities
were examined, accordingly, in the post-optimization evaluation.

(a)
R1
R R5
R3
R4
(b) 400 |
& 300 |
s
g
% 200 A
Q
O
c 100 -
)
0
32 50 75 100 150 200 250 300 350 400
Pipe diameter (mm)

Figure 2. Network topology and pipe diameter options: (a) topology;
(b) pipe diameters selected for the optimization. R1 to R5 are variable
head supply nodes.
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The optimization problem was cast as the design of a new network
as opposed to the rehabilitation and/or upgrading and capacity
expansion of a pre-existing network. The reason is that the existing
network already had enough capacity as the pipe diameters had
previously been optimized using commercial software. Therefore,
the real aim of the optimization herein was to reveal the amount
of spare capacity/redundancy in the system, if any, by determining
the extent to which the cost could be reduced further.

Hydraulic simulation details

For realistic comparisons with the existing network and to allow
for any built-in uncertainties and assumptions, the network
model and operational data from the water utility were used
without modification. Extended period simulation was carried
out with the nodal demands and 29 different fire flows. Head loss
due to friction was calculated using the Darcy-Weisbach formula
(Rossman, 2002). The pipe roughness heights ranged from
0.01 mm to 3.0 mm. Self-evidently, less expensive solutions could
be obtained by assuming pipe roughness values for new pipes.
Additional details are available in Seyoum and Tanyimboh (2014).

Parameters of the genetic algorithms

With a total of 28 current and historical pipe diameters in the
network and 251 pipes, the solution space, in theory, comprised
28%! feasible and infeasible solutions. However, the old (and
thus obsolete) pipe diameters that were no longer commercially
available were subsequently excluded from the solution space to
ensure that the solutions obtained by the optimization algorithms
would be achievable in practice. Strictly speaking, the real number
of distinct pipe sizes was less than 28 in practice, as some of the
pipe diameters were effectively duplicated, where the old pipe
diameters in inches (imperial units) had been replaced by the
corresponding diameters in mm (SI units) that were either similar
or essentially the same. The smallest and largest diameters in
the existing network were 32 mm and 400 mm respectively. Ten
commercially available pipe diameters were selected subsequently,
based on the existing diameters in the network that ranged from
32 mm to 400 mm, as shown in Fig. 2. In addition to the smallest
diameter (32 mm), the selected diameters included 50 mm, 75 mm
andallstandard diameters from 100 mm to400 mm which, therefore,
represents virtually a full set in practical terms. The solution
space was thus reduced by a factor of 2.8%' = 1.7 x 10"* to 10,
an enormous reduction.

No attempt was made to explore the rest of the solution space
that had been excluded and, similarly, no attempt was made to
improve the subset of the pipe diameter options that was used in
the optimization. Self-evidently, the solution space thus specified,
with 10*' candidate solutions, remained extremely large. Search
space reduction is beyond the scope of this article; sophisticated
search space reduction methods are available in the literature
(Kadu et al., 2008; Barlow and Tanyimboh, 2014; Tanyimboh
and Czajkowska, 2018; Abdy Sayyed et al., 2019). As explained in
Templeman (1982), the main objective herein was to demonstrate
that the algorithm developed can find numerous high-quality
solutions quickly and reliably, given that the present optimization
problem is NP-hard (Yates et al., 1984). Hereafter, all references
to the solution space refer to the reduced solution space of 10!,
unless otherwise stated.

Due to the large size and complexity of the water distribution
network, coupled with large spatial and temporal variations in
the demands, the demand satisfaction ratio of the entire network
rather than the critical node (Siew and Tanyimboh, 2012a; Siew et
al,, 2014) was used to evaluate the hydraulic performance function
£, in Eq. 3. In this way, any risk of premature convergence due to
excessive selection pressure would be obviated.
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Table 1. Results and performance statistics of the genetic algorithm

Cost (GBP) Function evaluations? Generational distance
Criteria Parallel Serial Combined Parallel Serial Combined Parallel Serial Combined
Minimum 418 685 419514 418 685 960 000 951 000 951000 0.00005 0.00005 0.00005
Maximum 453 643 432 643 453 643 994 000 998 000 998 000 0.00114 0.00085 0.00114
Mean 425334 421938 423 636 981 000 973700 977 350 0.00021 0.00023 0.00022
Median 422 265 420408 421318 982 000 972 000 979 500 0.00011 0.00013 0.00011
Std. Dev. 10139 4038 7710 9557 13 849 12171 0.00033 0.00025 0.00028

aRefers to number of function evaluations to reach least-cost feasible solution achieved

A four-bit binary string was used to encode the solutions.
There were thus 2* = 16 four-bit combinations of which 6 were
redundant. The redundant codes were allocated as follows: one
each to the two smallest and two largest pipe diameters, and one
each to the two middle pipe diameters. This symmetrical and
balanced allocation was designed to minimize the effects of the
representational bias that arises due to the imbalance between
the number of binary codes and decision (pipe diameter) options
(Tanyimboh and Czajkowska, 2018). Alternative approaches
for handling redundant codes are available in the literature
(Saleh and Tanyimboh, 2014; Herrera et al., 1998).

The crossover and mutation probabilities were p. = 1.0 and
p,, = 0.005, respectively. The population size was Np = 1 000 and
the maximum number of function evaluations allowed was 10°.
The serial and parallel algorithms were executed 10 times each.
An inherent feature of the solution methodology is that the initial
population always includes the minimum and maximum decision
variable vectors while the rest of the (Np - 2) solutions were
generated randomly. To reduce complexity in the subsequent
analyses and comparisons of the results obtained, the 10 sets of
initial populations used were identical for both algorithms.

RESULTS AND DISCUSSION
Serial algorithm

The additional results used to assess the algorithm developed
further and more deeply were obtained with a serial algorithm
on a supercomputer. The high-performance computing (HPC)
facility had 276 compute nodes. Each compute node had Dual
Intel Xeon 2.66 GHz CPU (6 cores each) and 48 GB RAM, on
the Linux Operating System. On average, the number of function
evaluations and CPU time to achieve the best solution, within
the specified upper limit of 1 000 000 function evaluations, were
973700 function evaluations and 12.81 h, respectively. The average
CPU time to complete a single optimization run comprising 1 000
000 function evaluations was 13.17 h, with a standard deviation
0f0.94 h.

The least expensive feasible solution obtained was 419 514 GBP
(British Pounds) at 985 000 function evaluations. The mean and
median values of the minimum cost achieved were £421 938 and
420 408 GBP, respectively, and the standard deviation was 4 038
GBP (Table 1). The existing network cost, with the optimized
diameters obtained previously using commercial software, was
809 700 GBP, approximately. Therefore, on average, a potential
saving of approximately 47.9% was achieved for the 10 optimization
runs collectively. The least expensive feasible solution of 419 514
GBP achieved a potential saving of approximately 48.2%.

It is worth re-stating that the existing network cost refers to the
real-world network after rehabilitation/upgrading with comm-
ercial software. The data for the original network prior to the
rehabilitation were not available. Therefore, by casting the problem
as the design of a new network, the solutions achieved would help
to reveal the amount of spare capacity or headroom in the existing,
rehabilitated network. Also, by identifying the suboptimal and/
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or grossly suboptimal pipe diameters in the existing network, the
solutions achieved could help simplify and guide the long-term
rehabilitation decisions.

Figure 3 shows the pipe diameters, velocities and nodal heads of
the existing and new optimized networks. In general, the new
optimized solutions had smaller pipe diameters and, hence, lower
residual heads than the existing network. As stated previously, the
existing network had some pipe diameters that were no longer
commercially available. The minimum residual head requirements
of 20.0 m and 3.0 m, respectively, for the demand nodes and fire
hydrants were fulfilled for the entire operating cycle. The heads at
the fire hydrants greatly exceeded 3.0 m due to the proximity of
the fire hydrants to the demand nodes.
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Figure 3. Comparison of the optimized pipe diameters, node pressures
and pipe flow velocities: (a) existing and optimized pipe diameters; (b)
node pressures for all time steps of the extended period simulation;
(c) flow velocities for all time steps of the extended period simulation
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The maximum velocity in the existing network was 1.1 m/s. A
large proportion of the velocities were less than 0.5 m/s, which
may be low under certain circumstances, considering such factors
as the water age and discolouration potential (Boxall and Saul,
2005; Besner et al., 2005; Furnass et al., 2013; Seyoum et al., 2013;
Seyoum and Tanyimboh, 2014). Indeed, Fig. 3¢ shows that all the
solutions depicted have pipes with low velocities. This points to
the need to include the minimum pipe velocity constraints in
the optimization model, in addition to any explicit water quality
related objectives (Woolschlager et al., 2005).

In the new optimized design, collectively 43 velocities (i.e. 0.6%)
with an arithmetic mean of 4.6 m/s exceeded the 3.5 m/s guidance
value in 27 pipes. It was observed that the high velocities were
related to the short pipes/sections of about 1.0 m in length, located
at the pipe junctions. The details of the fittings and connections
were not considered here; inter alia, they were not available. While
the maximum velocity constraints were not addressed explicitly in
the optimization problem, possibly an area for additional research
in the future, these results seem reasonable given the available
information.

Parallel algorithm

The parallel algorithm was executed on a Workstation with Dual
Intel Xeon 2.4 GHz CPU (four cores each) and 16 GB RAM, on the
Windows 7 Operating System. All the eight cores of the workstation
were utilized. A single run of the serial algorithm with 1 000 000
function evaluations required an average CPU time of 30 days
on the Workstation. The CPU time of the parallel algorithm with
1 000 000 function evaluations on the Workstation ranged from
1.75 to 2.74 days, or 2 days on average, i.e., an average speed up of
15. This is a significant achievement in the sense that it is far more
practical than the serial algorithm. The supercomputer’s average
CPU time of 13.17 h was obviously superior, but HPC facilities

are very scarce as stated previously. The above-mentioned average
speed-up of 15 refers to the speed-up achieved on the Workstation.
To clarify further, the supercomputer was used mainly to generate
quickly - given the lengthy execution times - the additional
solutions needed to assess the parallel algorithm rigorously. Typical
examples of the speed-ups achievable using parallel computing on
the supercomputer are available in Barlow and Tanyimboh (2014).

The least expensive feasible solution achieved by the parallel
algorithm was 418 685 GBP at 975 000 function evaluations.
This is 0.2% less expensive than the best solution from the serial
algorithm (419 514 GBP, 985 000 function evaluations) and is
a new best solution. It represents a potential saving of 48.3%
compared to the existing network. The average number of
function evaluations to reach the best solution achieved in each
optimization run (within the specified upper limit of 1 000 000
function evaluations) was 981 000.

Figure 3 also shows the optimized pipe diameters achieved by the
parallel algorithm. The solution had collectively 43 velocities in 27
pipes that exceeded the 3.5 m/s guidance value, with an arithmetic
mean of 4.7 m/s. As mentioned previously, the high velocities
were localised at the pipe junctions in the short pipes/sections of
about 1.0 m in length.

Accuracy and reliability of the solutions achieved

The Pareto-optimal front was approximated by merging the
solutions from all the non-dominated sets achieved herein and
in Seyoum et al. (2015). Figure 4 compares the individual non-
dominated fronts achieved to the Pareto front. The final Pareto
front achieved comprised N,, = 989 solutions while the fronts
of the individual optimization runs had Np = 1 000 solutions
each. This is the reason that some of the generational distance
values (e.g. Run 9 in Fig. 4) are seemingly relatively high, which
is somewhat misleading. Such values were nevertheless retained
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Figure 4. Evaluation of the Pareto fronts achieved. The costs shown are normalised.
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Figure 5. Evaluation of the convergence characteristics of the multi-objective genetic algorithm

herein for completeness. The minimum generational distance
value achieved was 0.00005 for both the serial and parallel
algorithms. This demonstrates the algorithm’s effectiveness and
reliability as well as the accuracy of the results clearly. The accuracy
and consistency of the results is therefore remarkable, considering
that the fraction of the solution space that was sampled in each
optimization run was only 10°/10%' = 10**. In other words, only
one solution in every 10** was simulated in each optimization
run. Indeed, the convergence characteristics in Fig. 5 show that
the algorithm’s progress is very quick and steady, with the bulk of
the reduction in cost occurring early on.

CONCLUSIONS

An efficient multi-objective genetic algorithm for the design
optimization of water distribution systems was developed and
demonstrated using a real-world case study with hundreds of
decision variables. In terms of the computational efficiency, only
one solution in every 10**° candidate solutions was sampled in
each optimization run. Thus, the fraction of the solution space
that was evaluated was an impressive 102%.

A controller-worker parallel algorithm developed for use on a
Workstation achieved an average speed-up of 15, thus reducing

Water SA 46(3) 465475 / Jul 2020
https://doi.org/10.17159/wsa/2020.v46.i3.8657

a 30-day optimization run to 2 days on average. Nevertheless,
the additional results obtained using a supercomputer and a
serial algorithm took only 13.17 h on average to complete one
optimization run. It should be noted, however, that HPC facilities
are very scarce.

The quality of the solutions was assessed (i) by comparing the
optimized designs achieved to the existing network, which was
previously optimized using commercial software, and (ii) by
spatial analysis of the Pareto-optimal fronts using the generational
distance. Highly competitive solutions were obtained consistently,
with a very high degree of reliability. The best feasible solution
achieved a cost 48.3% less than the previously optimized solution
of a real-world case study and is a new best solution. The
coeflicient of variation of the least cost achieved by the parallel
algorithm for a feasible solution was 0.024. The best generational
distance value achieved was 5 x 107, based on the normalised
objective function values.

The effectiveness of the multi-objective genetic algorithm
developed is due to the co-evolution and preservation of both
feasible and infeasible frontier-optimal solutions from the
beginning to the end of the optimization process. In this way, the
full range of the genetic materials are retained in the gene pool
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throughout the optimization run which, therefore, promotes
diversity and avoids stagnation and premature convergence. This
follows naturally from the strict interpretation and application of
the Pareto-optimality principle employed in the genetic algorithm
developed, which ensures that infeasible frontier optimal
solutions are not discarded arbitrarily and too quickly during the
optimization.

Except for the maximum and minimum decision variable vectors
that were always included by default in each optimization run,
an inherent feature of the solution methodology, the initial
populations were generated randomly. The role of the minimum
and maximum decision variable vectorsis that theyhelp toreinforce
and expand the population diversity through recombination
as the optimization progresses (Saleh and Tanyimboh, 2014).
However, unlike the minimum solution (decision variable) vector,
the maximum solution (decision variable) vector generally does
not survive until the last generation. The reason is that a more
economical non-inferior solution that has essentially the same
hydraulic properties as the maximum solution (decision variable)
vector tends to prevail at the expense of the maximum solution
(decision variable) vector.

Having demonstrated the effectiveness and reliability of the
genetic algorithm as a free-standing procedure, self-evidently, it
could be used readily in a memetic algorithm, for example, or
in combination with other approaches and solution-enhancing
techniques. However, these aspects were not considered in this
investigation. It would be instructive, nevertheless, to investigate
additional mechanisms to address other factors and constraints,
e.g., excessively low velocities, with the potential to extend the
algorithm’s functionality. A key issue is that the fitness assessment
of the solutions that violate any additional constraints should
avoid any built-in bias that favours the feasible solutions. This
is a necessary condition that enables frontier optimal infeasible
solutions to survive from the start to the end of the evolutionary
search process, thus focusing the search around the feasibility
boundaries.
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