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ABSTRACT

Sensitivity and uncertainty analysis are important tools in the modelling process: they assign confidence to model

results, can aid in focusing monitoring and preservation efforts, and can be used in model simplification. A weakness of
global sensitivity and uncertainty analysis methodologies is the often subjective definition of prior parameter probability
distributions, especially in data-poor areas. We apply Monte Carlo filtering in conjunction with quantitative variance-
based global sensitivity and uncertainty analysis techniques to address this weakness and define parameter probability
distributions in the absence of measured data. This general methodology is applied to a reservoir model of the Okavango
Delta, Botswana. In addition to providing a methodology for setting prior parameter distributions, results show that the use
of Monte Carlo filtering reduces model uncertainty and produces simulations that better represent the calibrated ranges.
Thus, Monte Carlo filtering increases the accuracy and precision of parametric model uncertainty. Results also show that
the most important parameters in our model are the volume thresholds, the reservoir area/volume coefficient, floodplain
porosity, and the island extinction coefficient. The reservoir representing the central part of the wetland, where flood waters
separate into several independent distributaries, is a keystone area within the model. These results identify critical areas
and parameters for monitoring and managing, refine and reduce input/output uncertainty, and present a transferable
methodology for developing parameter probability distribution functions, especially when using empirical models in data-
scarce areas.
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INTRODUCTION

Global sensitivity and uncertainty analysis (GSA/UA) system-
atically and quantitatively investigates input/output uncertain-
ties to assess a model’s reliability (Scott, 1996; Saltelli et al.,
2008) and can be used to assign confidence to model results.
Global uncertainty analysis (GUA) quantifies total model
uncertainty and global sensitivity analysis (GSA) apportions
that uncertainty to each of the parameters. While these are two
separate methods with different objectives, the overlap between
them is important. GUA is useful for quantifying model reli-
ability based on the uncertainty of the input parameters. GSA
is useful for understanding which of those parameters are
responsible for driving that uncertainty.

According to Beven (2006), ignoring model uncertainty
undermines the value of a model for its use in the decision-
making process. Understanding the uncertainty and sensi-
tivity associated with a model is useful in many contexts for
both modellers and managers. It allows decision makers to
acknowledge the reliability of models when assessing forecasts
and weighing risks between decisions (Saltelli et al., 2008).
Identifying important model parameters facilitates strategic
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data collection for parameter refinement and reduced model
uncertainty. Additionally, identifying important areas, dynam-
ics, or parameters in a model of natural systems allows manag-
ers to focus preservation efforts on those aspects. Recognising
unimportant parameters can allow model simplification which
reduces over-parameterisation. Furthermore, GSA can provide
an understanding of the importance of parameter interactions.
In a complex model, these interactions may not be obvious
and may have significant impacts on the model output due to
their non-additive nature (Saltelli et al., 2008). For all of these
reasons, GSA/UA is a crucial step in the modelling process.
There is a large body of work regarding various techniques
for assessing model sensitivity and uncertainty. Reviews of
these methods include (but are not limited to) Cacuci and
Ionescu-Bujor (2004), Matott et al. (2009), Saltelli et al. (2005),
and Saltelli et al. (2008). SA methods can be categorised as
local or global and global methods can be based on regression,
correlation, parameter bounding, and variance decomposition
(Matott et al., 2009). Methods based on correlation and regres-
sion use graphics or statistics to assign sensitivity. Parameter
bounding is an inverse method that maps the parameter values
producing behavioural results. In variance-based techniques,
the output variance is defined as the sum of the variances
assigned to each input and the interactions between the inputs.
Values for model parameters are inherently uncertain
because of the limitations in data collection, our understand-
ing of a system, and simplifications inherent to the modelling
process. In a GSA/UA, this uncertainty is accounted for by
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Figure 1
Okavango Basin and Delta location map. The hydrologic gauging
station at Mohembo is shown in the northern tip of the Delta.

using probability distribution functions (PDFs) which represent
the range and frequency of possible values for a parameter.
PDFs are generally set according to experimental data, litera-
ture values, expert knowledge, or some fixed interval. One of
the biggest criticisms of Monte Carlo based GSA/UA is the
subjective selection of parameter PDFs (Ivanovi and Freer,
2009; Pappenberger and Beven, 2006). For example, setting all
parameter PDFs in a model to £20% of their calibrated value
ignores the physical range of those parameters. However, set-
ting parameter PDFs based on just a few data points may not
reflect the true range of the parameter either. This is especially
problematic in data-poor areas where experimental data, lit-
erature values, and expert knowledge regarding the ranges for
parameters are lacking. It is also an issue in empirical models
where parameters cannot be measured directly.

To address this problem of the subjective selection of
parameter PDFs when conducting a GSA/UA, we employ
Monte Carlo filtering (MCF) in conjunction with GSA/UA to
refine prior PDFs. In MCF, model simulations are accepted or
rejected based on predefined criteria for acceptable model per-
formance (Rose et al., 1991; Salteli et al., 2008). MCF has been
shown to reduce the variance in model outputs and to be useful
in calibration (Rose et al., 1991). Here, we use MCF to redefine
prior PDFs based on the goodness of the model fit (Linhoss
et al,, 2012). Redefining prior PDF’s based on the MCF results
represents a novel method for reducing model uncertainty in a
reservoir model. This process accomplishes 3 goals:

o it presents an objective method for defining parameter

PDFs,

o itreduces parameter based uncertainty, and
o it forces the model to represent more realistic results in the
uncertainty analysis (UA).

We applied our MCF-GSA/UA method framework to a reser-
voir model of the Okavango Delta (Wolski et al., 2006), located
in north-western Botswana (Fig. 1). The Okavango Delta (‘the
Delta’) is a large, biologically diverse, and economically impor-
tant wetland. Threats to the hydrology and ecology of the Delta
include climate change and development. Hydrologic model-
ling of the Delta is characterised by large uncertainties because
of its size, remote location, flat topography, and complex eco-
hydrology. The Okavango Research Institute (ORI) model is a
reservoir model developed specifically for the Delta’s hydrology,
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which has been applied in a number of recent studies (Wolski et

al., 2006; Wolski and Murray-Hudson, 2008; Wolski, 2009).
The objectives of this research were to:

o identify important parameters within the model by apply-
ing GSA,

o reduce model complexity by setting unimportant param-
eters to constants, and

o objectively define parameter probability distributions in the
absence of measured data using MCF-GUA.

Parameters are defined as non-time series inputs in the model.
The GSA/UA used a framework in which the modified Morris
GSA (Morris, 1991; Campolongo et al., 2007) was first used to
qualitatively screen the least important parameters. Based on
the results from the modified Morris method, the least impor-
tant parameters were set to constants and the most important
parameters were further examined using the extended Fourier
Amplitude Sensitivity Test (FAST) GSA/UA technique (Cukier
etal., 1978; Koda et al., 1979; Saltelli et al., 1999), which quanti-
fies and apportions variance-based uncertainty. MCF (Saltelli et
al., 2008) was then used to objectively redefine PDFs and refine
model uncertainty. Through this methodology the uncertainty
of the model was quantified, the accuracy and precision of

the model was improved, and a deeper understanding of the
model’s internal dynamics and reliability was gained.

METHODS
Study site

The Okavango Basin is a large (530 000 km?) transbound-

ary watershed located in southern Africa and shared between
Angola, Namibia, and Botswana (Fig. 1). Within the basin, the
Okavango River feeds the Okavango Delta, which is a large
inland delta whose alluvial fan spreads out on the edge of the
Kalahari Desert. This inland delta and its hydrology are par-
ticularly important and unique because it supports a diversity
of wildlife and people who otherwise exist in an extremely arid
environment (Kgathi et al., 2006).

Modelling the hydrology of the Okavango Delta is espe-
cially problematic because of its large size, remote location,
lack of data, complex hydrology, and shallow topography. The
system is large. The entire geologic alluvial fan encompasses
40 000 km?* (Gumbricht et al., 2005) and flooding extents range
from 6 000-12 000 km? (Wolski et al., 2006). No roads traverse
the area and the field collection of data is extremely cumber-
some. The area also is extremely smooth and flat. Maximum
local relief is generally less than 2 or 3 m (McCarthy et al.,
2003; Gumbricht et al., 2001). As a result, like many wetlands,
flow direction and inundation area is determined by very slight
differences in elevation. Furthermore, variations in flow are
caused by poorly understood and hard to model processes
such as hippopotami (Hippopotamus amphibius) movements,
sedimentation, vegetation, peat accumulation, and fire. Overall,
data scarcity is a significant issue in this area.

The Okavango Research Institute (ORI) model

Because of these data limitations, a reservoir modelling
approach has often been used to simulate flows in the Delta
(Dincer et al., 1987; SMEC, 1990; Scudder et al., 1993; Gieske,
1997; WTC, 1997; Wolski et al., 2006). A review of these models
can be found in Kiker et al. (2008) and Wolski et al. (2006). The
ORI model is the newest reservoir model of the Okavango Delta
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(Wolski et al., 2006) (Figs 2 and 3). The ORI model has been
calibrated and tested (Wolski et al., 2006), and subsequently
used by policy makers in the area (DEA, 2006). The model
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Figure 2
Conceptual diagram of the Okavango Research Institute (ORI) model.
Adapted from Wolski et al. (2006).
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Figure 3
Diagram of the nodes and links in the Okavango Research Institute
(ORI) model. Double arrows between nodes 2 and 6 and nodes 6 and 12
represent 2 links at different thresholds.

has also been used to predict the impact of climate change
scenarios (Wolski, 2009). However, no formal uncertainty nor
sensitivity analysis has been conducted on the model.

The ORI model represents flood duration, flood frequency,
and flooding extents in the Okavango Delta, and outflow from
it via the Boro River at Maun. A complete description of the
ORI model, its parameters and calibration can be found in
Wolski et al. (2006). The model operates on a monthly time
step. Flow from the river is input at the top of the Delta at
Mohembo from measured or modelled data (Hughes et al.,
2006, Wolski 2009). The volume of water in each reservoir is
then computed by the continuity equation (Eq. (1)) where V'is
the volume of water, I is inflow, ET is evapotranspiration, P is
precipitation, Q is outflow, and Q,,is infiltration to ground-

water (Wolski et al., 2006). /
av
—r =1 —ET+P=Q—Quy a)

The inundated area in each reservoir is calculated from water
volume through a power relationship (Eq. (2)) where A is area,
V is volume and n and b are coefficients.

4 = nVh) )

There are 16 linked reservoirs in the model but 6 of these reser-
voirs act only to receive waters. Model parameters for each res-
ervoir include area, topography, evaporation, and flow parame-
ters (Table 1 and Fig. 2). Some of these parameters are constant
throughout the model (extinction depths, porosities, and 7 in
the area/volume relationship), some vary between the reser-
voirs (b in the area/volume relationship, delay, rainfall ratio
parameter, and groundwater reservoir areas), and some vary
between the reservoir connections (flow resistance and volume
threshold). Outputs from the reservoir model include monthly
inundation area and outflow from the Boro distributary.

The area/volume relationship parameters for each of the
reservoirs (n and b) were calibrated based on a 30-m digital
elevation map (DEM) developed from a sparse network of
gravimetric measurements and land-cover map (Gumbricht
etal., 2005). Flows between reservoirs are expressed though
volume thresholds (v ), where a is the upstream reservoir and
z is the downstream reservoir. Upstream reservoirs may have
several outlets that can feed more than one downstream reser-
voir. The volume threshold parameters (v ), were empirically

TABLE 1
ORI model parameters. The parameters that are reservoir dependent have individual PDFs for each reservoir.
U = uniform continuous distribution, D = uniform discrete distribution, CV = calibrated value.
Parameter Units # of para- PDF cv Description
meters
Fdet m 1 U(20%*) 5 Floodplain extinction depth
) idet m 1 U(20%*) 20 Island extinction depth
Spatially fpor % 1 U(20%*) 0.3 Floodplain soil porosity
uniform ’
ipor % 1 U(20%*) 0.3 Island soil porosity
n 1 U(20%*) 25 Area/volume coeflicient (A = nV?)
b, 16 U(20%*) | 0.62-0.76 | Area/volume coefficient (A = nV?®)
k, months 20%* U((20%%) 0.02-5 | Resistance to flow
. v Mm? 20%* U(20%*) | 210-2000 | Volume threshold
Reservoir delz binar 5 D (0,1) 0,1 Delay parameter for units
dependant o Y > > - ol -
m, % 16 U(20%*) 0-0.9 |Rainfall ratio parameter
fa, km? 16 UQ0%*) 1-348 | Floodplain groundwater reservoir area
ia, km? 16 UQ20%*) | 0.6-176 |Island groundwater reservoir area

*PDF Varies between 20% of the calibrated model
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derived and used to calibrate the model (Wolski et al., 2006).
The reservoir time constant coefficient (k) is equivalent to sur-
face flow resistance. In addition to the 16 reservoirs, parameters
for k,_and v _are given for 2 double links (Fig. 3) and 2 dummy
reservoirs. The delay parameters (delay) are empirically-
derived discrete on/off switches that also slow the water flow.

Each reservoir is divided into floodplain area (fa) and
island area (ia)) so that groundwater flow between the two areas
can be represented under floods of varying size. Soil porosity
is represented as 2 parameters in the model: island (ipor) and
floodplain (spor) soil porosity. Groundwater flow and infiltra-
tion processes are represented by a series of sub-reservoirs
including 5 floodplain groundwater reservoirs, and 5 island
groundwater reservoirs within each surface reservoir com-
putational unit. Water in the surface reservoir infiltrates into
the floodplain groundwater reservoirs which then flows to the
island groundwater reservoirs.

Actual evaporation is based on potential evapotranspira-
tion. The island and floodplain extinction depths (idet and
fdet) empirically represent rooting depth and simulate a linear
decrease in the rate of evapotranspiration with depth from the
surface. The model uses the Penman-Monteith equation (Allen
etal., 1998) to calculate the reference crop transpiration. These
calculations are adjusted based on weather station measure-
ments made inside the Delta and also with measurements
from an eddy covariance system located at Maun and Nxaraga
(Wolski et al., 2006). Rainfall is input over the inundated areas
of the Delta based on an inverse distance-weighted relation-
ship between 2 weather stations in the area. The rainfall ratio
parameter (m,) is used to vary the rainfall in the reservoirs
based on this relationship.

The ORI model links the concept of the reservoir model,
as described above, to a GIS model to simulate the spatial
distribution of the flood (Wolski et al., 2006). The GIS model
is based on satellite imagery of flooding extents. A Gaussian
PDF was assigned to each pixel describing the likelihood of
the pixel being inundated given the total extent of inundation.
Then, given a volume of water in the reservoir model each pixel
is assigned an inundation/non-inundation status based on the
more likely probability.

The hydrological model was run from 1967 to 2003 with
a calibration period between 1968 and 1986. It was calibrated
manually through trial-and-error adjustments of the parame-
ters (Wolski et al., 2006). The objective functions for calibration
were the inundation extents and outflow from the Boro River at
Maun. The estimation of inundation extents was derived from
satellite imagery available from McCarthy et al. (2003). Outflow
from the Boro River was gauged in the river.

Results from the ORI calibration show good correlation
with observed data. The model produced a monthly inunda-
tion area that compares to observed data with a root mean
squared error (RMSE) of 528 km? and a correlation coeflicient
0f 0.90 for the entire Delta (Wolski et al., 2006). Additionally,
the outflow at Maun showed a RMSE of 11.8 M m*/month and a
correlation coefficient of 0.91 when compared to observed flows
(Wolski et al., 2006).

The objective function for our study was defined as the
Nash-Sutcliffe coeflicient of efficiency (NSE) (Nash and
Sutcliffe, 1970), which was applied to quantify the degree of
matching between the monthly inundated area of the entire
Delta that was obtained in the original calibration model runs
(Wolski et al., 2006) and our uncertainty analysis runs. The
inundation area is used as the objective function because, in
the absence of good topographic data, it serves as a proxy for
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volume, and is an important social and ecological factor with
regards to floods and droughts.

Global sensitivity and uncertainty analysis

There are a number of different approaches available for con-
ducting a sensitivity analysis on models ranging from simpler
one-at-a time (OAT) methods to advanced global techniques
(Saltelli et al., 2008, Cacuci et al., 2003). With OAT techniques
the variation of the model output is investigated by changing a
single model parameter at a time, hence the name ‘local’ sen-
sitivity. This traditional sensitivity analysis method is limited
since it usually explores a limited parametric range (central
value +/- some perturbation percentage) and does not account
for interactions between parameters (Saltelli et al., 2008). When
model responses to parameter perturbations are non-additive
and non-linear, as with many complex models, simple OAT
techniques are not appropriate. Instead, global methods are
preferred because they simultaneously vary the parameters all
at once, and explore the entire parametric space (as described
by the parameter PDGs), and are thus more appropriate. Our
study uses an evaluation framework based on two such mod-
ern global techniques: a qualitative screening method (Morris,
1991) and a quantitative variance-based method (Saltelli et al.,
1999). This 2-step process has been used in the examination of
input/output relationships in several environmental investiga-
tions (e.g. Munioz-Carpena et al., 2007; Chu-Agor et al., 2011;
Linhoss et al., 2013). The screening method allows for an initial
reduction in the number of parameters to use in the more com-
putationally intensive quantitative FAST GSA/UA.

Modified Morris method

The GSA/UA of the ORI model began with a qualitative, less
computationally intensive, screening assessment using the
modified Morris method (Morris, 1991; Campolongo et al.,
2007). When performing the modified Morris method, the
model is run for p(k+1) iterations, where k is the number of
parameters and p is the number of levels within the parameter
PDFs (i.e. resolution). Thus, the region of experimentation, £,
is described by a hypergrid of parameter sets with k dimensions
and p levels. Equation (3) describes the Morris method ‘elemen-
tary effect’ (EE) on the output of interest (y) from varying

the ith parameter (x) by A, for a given set of parameter values
(vector X), where A is a value in {0, 1/(p-1)...,1-1/(p-1),....1} and
X=(x, X,..., xk) is a sample from Q.

FE - V(X X, X+ A X e, X, ) — V(X)) 3)
! A

Morris proposed 2 sensitivity indices, which are plotted

together to provide a visual indication of relative parameter

importance:

* Misthe mean of the EE, and represents the direct (or first-
order) effect of the parameter on the output. This mean
magnitude of the effect also indicates the degree to which
uncertainty associated with the parameter will propagate
through the model and onto the output. This information
therefore proves valuable for uncertainty reduction.

e 0O isthe standard deviation of EEi, which estimates the
variation in the elementary effects, and therefore indi-
cates the extent to which parameter perturbation effects
depend on the values of other parameters (interaction
effects) or produce nonlinear output effects. The modified
Morris method (Campolongo et al., 2007) has a number
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of improvements over the original method. It allows for
an analysis of models with multiple outputs, allows fac-
tors to be grouped, and has a more effective sampling
strategy at no additional computation cost. Furthermore,
the enhanced sensitivity index p* calculates the mean of
the absolute value of the elementary effects and is approxi-
mately as good as indices which are based on variance
methods (Campolongo et al., 2007).

Extended FAST

Once the most important parameters were identified using the
modified Morris method, a quantitative FAST analysis (Cukier
etal., 1978; Koda et al., 1979) was conducted on the subset of
these most important parameters. FAST uses Fourier analysis
to decompose the variance of model outputs into first-order
variances for each parameter. In the method, N design points
are chosen within a search curve of the k parameters’ input
space, thus creating N input sets. The curves are constructed
to explore each parameter with a different sampling frequency
(“’1’ Wperrs @) The model is run at each design point. The out-
puts are then reordered so that the design points are sorted in
increasing order according to the magnitude of parameter x,.
The Fourier spectrum is computed on the output which gives
the importance of the parameter x..

FAST defines the first-order sensitivity index, S, as the
fraction of the model output variance that can be attributed
to the ith parameter. In a model that is perfectly additive (i.e.
no parameter interactions) the summation of the variances for
each of the parameters will be unity; XS = 1. In models where
there are interactions this sum will be greater than one. In this
work, we apply an enhanced version of FAST, the extended
FAST technique (Saltelli et al., 1999), which allows for the addi-
tional quantification of higher order variance (interactions) for
a given parameter (i) using the total sensitivity index, S,,. For
example, the total sensitivity for parameter I in a model with n
parameters is defined as:

%=&+&+%ﬁyﬁ&m @)

From Eq. (4) interactions can be computed from S —S,. One
limitation of this variance-based technique is that it cannot
be used on parameters that are interdependent (Crosetto
and Tarantola, 2001). When performing the extended FAST
GSA/UA, a model is run for M(2k+2) iterations, where M is
a number between 100’s and 1 000’s and k is the number of
parameters (Saltelli et al., 1999).

Prior parameter PDFs

Both the modified Morris method and extended FAST method
rely upon creating model input sets by sampling values from
PDFs for each parameter and running the model iteratively
using these input sets. A careful selection of the prior PDFs
for each parameter is especially important because these
ranges directly affect the magnitude of uncertainty and the
importance of the parameters. According to Mufioz-Carpena
etal. (2007), when the data for the parameters show no appar-
ent distribution such as normal or triangular, a uniform PDF
allows for equal probability of selection across the defined
range. Thus, because of the lack of data available in the
Okavango Delta, conservative uniform distributions of £20%
of the calibrated value were used as the default prior distribu-
tion type throughout. While +20% is an arbitrary cut-off, we
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show in the results that this range of values is sufficient because
the output frequency histograms that were used to develop

the refined PDFs generally display normal distributions whose
tails can be inferred (see Fig. 5). SimLab v3.2.6 (SimLab, 2011)
software was used to sample parameter PDFs, and post-process
the model results according to the modified Morris and FAST
methods.

Monte Carlo filtering

Using the results from the FAST GSA, Monte Carlo filtering
(MCF) (Saltelli et al., 2008; Rose et al., 1991) was conducted to
objectively reduce and refine input/output model uncertainty.
For MCEF, a threshold in the model results was used to designate
the FAST model results as either behavioural or non-behav-
ioural. Outputs that exceed the threshold are considered ‘good’
or ‘desirable’ and are classified as behavioural (B), and outputs
that do not meet the threshold are considered ‘undesirable’ and
are classified as non-behavioural (B). For this work, the thresh-
old was chosen based on the NSE between the FAST model
runs and the calibrated model’s total monthly inundated area.
Behavioural simulations were defined as simulations where

the NSE was > 0. Non-behavioural simulations were defined

as simulations that performed below 0. Zero was used as a
threshold because NSE values above 0 indicate that the model
performs better than the mean of the observed data.

Two subsets of the parameter sets, X, which were used to
produce each output, are then defined as x, ,and x, . This
assigns 2 new PDFs for each parameter, one PDF based on
the behavioural outputs (), f, (x, ,) and one based on the
non-behavioural outputs (n), f, (x, ,). To determine if f, (x, ) is
statistically different from f (x, ,)the 2-sided Smirnov test was
used on each parameter independently. The null hypothesis
(H,) states that the distribution of the values for parameter x,
producing B is equal to the distribution of parameter values
producing B. If these two parameter distributions are shown
to be significantly different, then x, is considered an important
parameter in defining the behaviour of the model (Saltelli et al.,
2008).

In this work, if the two parameter distributions fm(xiiﬂ) and
f,(x,_g)are shown to be significantly different, then the prior
distribution for x, is redefined based on f, (x, ). Normal distri-
butions were curve fit to the behavioural parameter distribu-
tions that were significantly different from the non-behavioural
distributions and set as the new posterior PDF. The posterior
PDFs were not changed for the parameters where the behav-
ioural and non-behavioural distributions were not significantly
different. The FAST GUA was then rerun based on the posterior
parameter distributions.

This method is designed to reduce the output uncertainty
but does not directly prescribe model uncertainty. This is
because the parameter sets that lead to undesirable model out-
puts are not discarded. Rather, the PDFs for each parameter are
redefined based on significant differences between behavioural
versus non-behavioural distributions.

RESULTS AND DISCUSSION

Modified Morris method

To screen the initial 114 parameters (Table 1), the model was
run 1 150 times using the modified Morris method. The results

show the Morris scatter plot (Fig. 4) where the x-axis repre-
sents the direct effects (u*), and therefore ranks the direct
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Figure 4
Modified Morris method GSA results for the Nash-Sutcliffe coefficient
of efficiency of inundated area within the Delta. Important
parameters include the island extinction coefficient (idet); floodplain
soil porosity (fpor); volume thresholds for the linkages between
the Ngogal reservoir and the reservoirs: Ngoga2 (v, ), Thaoge (v,,),
Xudum (v,), Boro (v,.), Manuachiral (v,), and Selinda (v,); and the
power area/volume coefficient for the Xudum reservoir (b,). Labels
for the less important parameters are omitted for clarity.
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importance of each parameter, and the y-axis represents the

indirect effects (o), and therefore ranks the role of higher-order

interactions of the parameters. These higher-order interactions
represent the range of the importance of a parameter, which
depends on the values for the other parameters. A threshold of

0.1 on the x-axis was set to distinguish important from unim-

portant parameters. Though this threshold is arbitrary, results

from the FAST analysis showed low sensitivity of the model to
parameters that were included using this threshold, indicating
that it is sufficiently conservative.

Because the parameters are scattered on both the o and

p* axes (Fig. 4), both direct (first-order) and indirect (higher-

order) effects are important. The modified Morris results gave 9

parameters that stand out as the most important (Fig. 4):

o Island extinction coefficient (idet)

» Floodplain soil porosity (fpor)

o Volume thresholds for the linkages between the Nqogal
reservoir and the reservoirs: Nqoga2 (v,)), Thaoge (v,,),
Xudum (v,,), Boro (v,), Manuachiral (v,), and Selinda (v,,)

+ Power area/volume coefficient for the Xudum reservoir (b,)

From the strong model sensitivity to the 6 volume thresholds,
the importance of this type of model parameter is apparent.
Furthermore, all 6 of the important volume thresholds flow
out of a single reservoir, Nqogal (Fig. 3). There are a total of
7 volume thresholds that flow out of Nqogal. The one volume
threshold that originates from Nqogal but is not highly impor-
tant is linked to the Boro reservoir where there is a double link
to the Nqogal reservoir (Fig. 3). This double link in the Boro,
which splits the flow between Nqogal and the Boro, is unique
in the Nqogal reservoir and may explain why this volume
threshold did not demonstrate the same level of importance.
This analysis shows that Nqogal is a keystone reservoir and
is responsible for much of the sensitivity in the model, hav-
ing an important influence in determining how the predicted
flood pulse is routed between the reservoirs. The identification
of Nqogal as a keystone reservoir and the volume thresholds
as important parameters in general has valuable management
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Frequency histograms for parameters whose behavioural distributions
were shown to be significantly different from the non-behavioural
distributions, for the a) island extinction coefficient (idet); b) floodplain
soil porosity (fpor); c) the power area/volume coefficient for the Xudum
reservoir (b,); and volume thresholds for the linkages between the
Ngogaf reservoir and the reservoirs: d) Nqoga2 (v, ), e) Thaoge (v,,), f)
Boro (v,), g) Manuachiral (v,), and h) Selinda (v,,). Posterior curve fit
distributions based on the behavioural histograms are also shown.

implications. Monitoring and management efforts should focus
on the topography and hydrology of the Nqogal area because

it is likely that physical changes here could have important
impacts on how the water is apportioned downstream through-
out the Delta.

FAST and Monte Carlo filtering

Following the modified Morris screening method the FAST
GSA/UA was used to quantify the uncertainty and sensitivity
associated with the most important parameters. The model was
run 14 985 times, while varying the 9 most important param-
eters throughout their parametric space as defined by the prob-
ability distributions. All other parameters were set to constants.
As with the Morris analysis, the objective function was defined
as the NSE between the original calibration model runs (Wolski
etal., 2006) and the uncertainty analysis runs of the monthly
inundation total area of the Delta. This method was performed
twice; first based on the prior PDFs and then again based on the
MCEF PDFs.

MCEF resulted in 5 207 out of 14 985 simulations meet-
ing the behavioural criteria. The 2-sided Smirnov test showed
that the behavioural and non-behavioural distributions for
idet, fpor, Vo Vo Vass Voo Vo and v, were significantly differ-
ent. Histograms show the skew of these results (Fig. 5). The
behavioural distribution for b, was not significantly different
from the non-behavioural distribution and so its posterior
distribution remained unchanged. Posterior normal PDFs
were assigned to the parameters that demonstrated a signifi-
cant difference between the behavioural and non-behavioural
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TABLE 2
Nash-Sutcliffe coefficient of efficiencies illustrate the accuracy of the initial FAST uncertainty
analysis (prior) and after Monte Carlo filtering (posterior). The narrowing of the confidence
intervals, as evidenced by the per cent difference in the width, shows how the precision of the
model is improved in the posterior uncertainty analysis. Cl = 95% confidence interval. % Diff
Width = per cent difference in the width of the confidence intervals. A negative value indicates the
narrowing of the confidence interval in the posterior uncertainty analysis.
Prior FAST GUA Posterior FAST GUA % Diff
Reservoir .
LowerCl | UpperCl | Clwidth | LowerCl | UpperCl | CIWidth width
Panhandle 0.70 1.00 0.30 0.75 1.00 0.25 =20
Nqogal -0.09 1.00 1.09 0.08 1.00 0.92 -17
Nqoga2 -12.47 0.87 13.34 -8.55 0.90 9.45 -34
Thaoge -130.62 0.87 131.49 -37.22 0.90 38.12 -110
Xudum -27.78 0.85 28.63 -11.41 0.88 12.29 -80
Boro -2.53 0.92 3.45 -2.12 0.94 3.06 -12
Maunacharial -28.13 0.99 29.12 -1.28 1.00 2.28 -171
Maunacharia2 -10.31 0.89 11.20 —-6.03 0.90 6.93 —47
Selinda -102.48 0.88 103.36 -23.91 0.91 24.81 -123
Mborga —6.44 0.93 7.36 -3.75 0.92 4.67 —45
Khwai =775 0.89 8.64 -4.96 0.88 5.85 -39
Delta -0.29 0.96 1.25 0.09 0.96 0.88 =35
distributions (Fig. 5). The FAST methodology was then rerun TABLE 3
using the posterior MCF distributions. The results from this Change in precision between the initial FAST uncertainty
second MCF FAST analysis are referred to as the posterior analysis (prior) and after Monte Carlo filtering (posterior). The
GUA. difference between the prior and posterior Nash-Sutcliffe
The comparison between the prior and posterior UA coefficient of efficiencies shows that the accuracy of the
FAST runs shows that MCF reduced model uncertainty and results was improved in the posterior uncertainty analysis.
increased the model’s accuracy and precision. Within the con- Prior average Posterior Difference
text of this study, a confidence interval represents the distance average
between output values and represents the model uncertainty. Panhandle 0.9 0.9 0.0
According to the 95% confidence intervals, MCF reduced Ngogal 0.6 0.7 0.1
input/output uncertainty in all of the reservoirs as well as in Ngqoga2 45 ~0.8 3.6
the overall Delta (Tzoible 2). Réduction of .unce.rtainty varied Thaoge _16.2 34 12.8
betV\{e.e:n 12 and 171%. Reducmg uncertainty increased the Xudum 34 13 21
precision of the model results (i.e. the closeness of the outputs B 07 02 0l
to each other). Additionally, MCF produced results that more oro - - - :
accurately represented the calibrated ranges (i.e. the closeness Maunacharial —2.0 0.5 2.5
of the outputs to the calibrated value). The average NSEs in Maunacharia2 2.2 -0.2 2.0
all of the reservoirs, except the most upstream reservoir (i.e. Selinda -13.1 2.4 10.7
the Panhandle) were pushed closer to 1 in the posterior GUA Mborga -1.4 -0.3 1.1
(Table 3). Improvements between the prior and posterior aver- Khwai ~1.8 —04 15
age NSE range from 0.0 to 12.8. Thus, MCF was shown to be Delta 0.6 07 01

a useful method for objectively constraining the prior PDFs,
reducing the input/output model uncertainty, and improving
the accuracy and precision of the results.

These results also reveal a range of uncertainty between the
reservoirs. The reservoirs with the least amount of uncertainty
are the Panhandle and Nqogal, which is likely a result of their
locations upstream from the complex linkages (Fig. 3). Thaoge
and Selinda have the highest levels of uncertainty with Xudum
and Nqoga?2 following. These reservoirs retained relatively
high levels of uncertainty even after the PDFs for their volume
thresholds were constrained in the MCF.

The confidence intervals shown in Table 2 indicate that
the uncertainty in the total Delta is not the summation of the
uncertainty in the individual reservoirs. In fact, the width of
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the Delta’s confidence interval ranks as the third narrowest
when compared to all of the reservoirs in the prior GUA and
the second narrowest in the posterior GUA. This is likely a
result of the underlying mechanics of the model. The param-
eters in the ORI model are more focused on varying which
reservoir the water is routed to, versus the total volume of
water in the system. This is in part due to the fact that the vast
majority of water flowing into the Delta comes from upstream
inputs. This structure leads to a higher level of confidence in
the model’s mass balance (and the total flooding extents in the
entire Delta) than in the distribution of the flood between the
various reservoirs.
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Figure 6
FAST GSA of first and higher-order (R) indices for the coefficient of
efficiency of inundation within the Delta. Parameters include the island
extinction coefficient (idet); floodplain soil porosity (fpor); volume
thresholds for the linkages between the Nqogal reservoir and the
reservoirs: Ngoga2 (v,)), Thaoge (v,,), Xudum (v, ), Boro (v,.), Manuachira1
(v,,), and Selinda (v,); and the power area/volume coefficient for the
Xudum reservoir (b,).

Like the Morris results, the FAST GSA showed that both
first-order effects and higher-order effects are important in
determining the model behaviour (Figs 6 and 7). The higher
order effects account for 72% of the total model output vari-
ance. Also, as with the Morris analysis, the importance of the
volume thresholds flowing out of the Nqogal reservoir con-
tinued to dominate the model’s sensitivity, with v,  showing
the highest level of importance. This reiterates that, for man-
agement purposes, the entire area represented by the Nqogal
reservoir should be monitored for changes and protected from
disturbance.

CONCLUSIONS

This GSA/UA of the ORI reservoir model presents a novel dem-
onstration of a previously described generic method for objec-
tively reducing and refining uncertainty (Linhoss et al., 2012)
which is especially relevant for data-scarce areas. It also pro-
vides important insights into the hydrology of the Okavango
Delta, the sensitivity and uncertainty of the ORI model, and
reservoir models in general. These insights are useful for both
modellers and managers in the Okavango Delta as well as for
water resource researchers and practitioners in a more general
sense.

Ivanovi and Freer (2009) state that it is especially difficult
to objectively test the uncertainty of parameters for empiri-
cal models and that most methods proposed thus far have
been subjective (e.g. Beven, 2006; Beven, 2007; Goldstein and
Rougier, 2009). Pappenberger and Beven (2006) also made the
point that uncertainty analyses may be too subjective to be of
practical use because of the arbitrary selection of prior param-
eter distributions. The subjectivity of traditional uncertainty
analysis techniques was directly addressed through this work.
MCEF was used in conjunction with GUA to objectively refine
parameter PDFs based on the goodness of fit of model results.
Additionally, through this method, the model outputs more
closely resembled the calibrated values in both precision and
accuracy. This is especially useful in data-poor areas where
there is a lack of information available for defining PDFs.

This work also provides insights into the hydrology of the
Okavango Delta and reservoir models in general. The GUA

112

o =
[ = N}

Sensitivity Index
o <]
» ()]

TN
. [ |

idet fpor bs Va7

Va9 Vag Vs Vog V23

Inputs
O FAST first order indices B FAST higher order indexes

Figure 7
FAST first-order and higher-order, and total order GSA results for the
coefficient of efficiency of inundation within the Delta. Parameters
include the island extinction coefficient (idet); floodplain soil porosity
(fpor); volume thresholds for the linkages between the Nqogal reservoir
and the reservoirs: Nqoga2 (v,,), Thaoge (v,,), Xudum (v,,), Boro (v,),
Manuachiral (v,), and Selinda (v,,); and the power area/volume
coefficient for the Xudum reservoir (b,).

showed that the flooding extents in some of the individual
reservoirs are more uncertain than the flooding extent of the
Delta as a whole. This is because most of the dynamics within
the model relate to where water is apportioned rather than how
much water is in the system. The GSA highlighted the impor-
tance of volume thresholds in the ORI model and showed that
the thresholds within a highly-linked reservoir were particu-
larly important. The importance of these volume thresholds,
particularly in highly-linked reservoirs, can be applied to
reservoir models in general.

This work identified the most and least important model
parameters, which is useful in focusing future calibration and
model adjustments. Unimportant parameters, which have little
impact on the model outputs, include: k_, ia, and m.. In future
modelling efforts these parameters may be ignored or set to
constants in order to simplify modelling and calibration with-
out compromising accuracy. Conversely, the parameters: idet,
o1V, ¥, Voo Vs ¥, v, and b, were found to be particularly
important. Future calibration efforts should begin by adjust-
ing these parameters within their likely bounds. In particular,
Nqogal was identified as a keystone reservoir as volume thresh-
olds that represent water flowing out of Nqogal were found to
be especially important. Future efforts may focus on obtaining
physically-based values for these parameters. Doing so may not
only improve the model but will also result in a more physically
representative model.

Managers can also use the results of this GSA/UA to
develop strategic monitoring plans based on the important
parameters. The Nqogal reservoir feeds 6 reservoirs directly,
and understanding these linkages was shown to be important
for understanding and modelling how water is apportioned
within the Delta. The importance of the volume thresholds
shows that the quality of the topographic data is an important
factor in understanding the hydrology of the Delta. Acquiring
topographic data that is accurate enough for physically routing
water in a hydrologic model is a significant challenge because of
the large, flat, and remote nature of this site. Furthermore, there
is a lack of understanding what even defines topography within
the Delta in the context of hydrologic modelling (i.e. mineral
sediment, top of peat layer, etc.). Future monitoring efforts,
which are aimed at improving model performance, should be
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focused on understanding the topography of the Nqogal area
and how water is routed from this area to the downstream
distributaries. Managers should also be aware that any changes
in the Nqogal area may have important downstream conse-
quences. Interestingly, channel aggradation through sedimen-
tation is taking place in the Nqoga area (Wolski and Murray
Hudson, 2008). Because of this study, we are now aware that
these processes may have an important impact on the parti-
tioning of water between distributaries.

In conclusion, this work has technical and management
implications by presenting an objective method for refining
prior parameter PDFs in a data-scarce area, reducing model
uncertainty, and identifying important areas for study. As the
ORI model is used and refined in the future, these insights
can optimise how the model is improved. The MCF method
for objectively refining prior PDFs and reducing uncertainty
presented here is a transferable tool that can be used to improve
the accuracy and precision of any model. This is especially use-
ful when using empirical models in data-poor areas.
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