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Abstract

Accurate climate surfaces are vital for applications relating to groundwater recharge modelling, evapotranspiration estima-
tion, sediment yield, stream flow prediction and flood risk mapping. Interpolated climate surface accuracy is determined
by the interpolation algorithm employed, the resolution of the generated surfaces, and the quality and density of the input
data used. Although the primary input data of climate interpolations are usually meteorological data, other related (inde-
pendent) variables are frequently incorporated in the interpolation process. One such variable is elevation, which is known
to have a strong influence on climate. This research investigates the potential of 4 additional variables for inclusion in the
interpolation process. Three of the variables, namely, slope gradient, slope aspect and hillshade, are related to topogra-
phy, while the fourth is related to large water bodies (i.e. distance to oceans). Correlation analyses were used to determine
the suitability of each of the 4 variables for interpolating climate surfaces in the Western Cape Province, South Africa.
Although moderate correlations were identified between climate records and distance to oceans, no significant correlation
was found for slope gradient, slope aspect and most variations of hillshade. However, a moderate correlation was identified
between rainfall records and hillshade with a 180° azimuth. This variable was consequently used in various combinations
with distance to oceans and elevation to generate 8 sets of high-resolution (i.e. 3 arc second) climate surfaces of the Western
Cape. According to an accuracy assessment of the resulting surfaces, distance to oceans reduced the mean error of monthly
mean maximum daily temperature interpolations by 27%. Distance to oceans also improved the accuracy of monthly mean
minimum daily temperature interpolations for October through April. Although hillshade (180° azimuth) did not improve
accuracies for temperature interpolations, it did improve the accuracy of monthly rainfall surfaces for 4 months of the

year. The combinations of input variables that produced the lowest monthly mean errors were used to generate a new set

of surfaces using all available meteorological data. A pair-wise comparison of the new interpolated surfaces with existing
climate surfaces revealed that the surfaces created using our methodology are, in general, more accurate than any existing
interpolations.
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Introduction

Accurate climate data are vital for hydrological applications
such as groundwater recharge modelling (Archer et al., 2009;
Wassenaar et al., 2009), evapotranspiration estimation (Siebert
and Doll; 2010, Zhu et al.), sediment yield (Faran Ali and de
Boer, 2008), stream flow prediction (Besaw et al., 2010) and
flood risk mapping (Bradshaw et al., 2007). Spatially inter-
polated climate data, or climate surfaces, are also important
in agricultural applications, particularly those related to land
suitability analysis (Fourie, 2006; Van Niekerk, 2008), terroir
studies (Carey, 2005) and crop-water management (Huang and
Li, 2010). Unfortunately, the resolution and accuracy of exist-
ing spatially interpolated climate data are often not sufficient
for applications on regional and local scales. This is true for the
Western Cape Province of South Africa, where the increasing
use of geographic information systems (GIS) to support envi-
ronmental and water management decisions has led to a grow-
ing need for high-resolution climate surfaces. A requirement
analysis (Van Niekerk, 2008) revealed that such data should be
suitable for use at large mapping scales (i.e. 1:50 000 or larger)
and be accurate enough to support decisions at a local level.
Contrary to some studies (e.g. Hutchinson et al. (1984);
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Sharples et al. (2005)) that have shown that the accuracies of
interpolated climate surfaces, particularly those related to rain-
fall, do not necessarily improve with fine spatial resolutions,
Hijmans et al. (2005) suggests that climate surface accuracy
strongly relates to surface resolution as climate variation is
often lost at lower spatial resolutions. Interpolated surfaces
with high resolutions are therefore more likely to accurately
represent climate variation at large mapping scales.

The accuracy of climate surfaces is also directly influenced
by the quality and density of input data and the robustness of
the interpolation algorithm. Although the primary input data
of climate interpolations are usually weather station data, other
related (independent) variables are frequently incorporated in
the interpolation process. One such variable is elevation, which
is known to have a strong influence on climate. Slope gradient
and aspect are frequently used as additional variables to permit
the incorporation of topographical effects on temperature and
rainfall, while distance to large water bodies are often used
to simulate the effect that oceans and lakes have on climate
(Hutchinson, 1998).

This research investigates the potential effects of 4 addi-
tional variables on climate surface accuracy when using
the well-documented (Hutchinson, 1989; Hutchinson, 1998;
Hutchinson, 1998; Hutchinson, 2011; Hutchinson et al., 1996)
and popular (Chapman, 2000; Funk and Richardson, 2002;
Hijmans et al., 2005, Jakob et al., 2005; Jeffrey et al., 2001;
McKenney, 2000; Price et al., 2000; Zuo et al., 1996) thin-plate
smoothing spline interpolation algorithm of the ANUSPLIN
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software. Three of the variables that were investigated,

namely, slope gradient, slope aspect and hillshade, are related
to topography, while the fourth is related to large water bod-

ies (i.e. distance to oceans). Hillshade was incorporated as an
additional variable as it combines slope gradient and aspect and
was expected to better emulate the effect of weather patterns in
mountainous regions (e.g. rain shadows). Correlation analyses
were used to determine the suitability of each of the 4 variables
in the creation of climate surfaces for the Western Cape. The
variables deemed to have a direct influence on the study area’s
climate were used in various combinations to generate 8 sets of
high-resolution (i.e. 3 arc second) climate surfaces. The accu-
racy of the resulting surfaces was assessed using reference data
to determine the best combination of input variables.

Study area

The Western Cape Province (Fig. 1) is situated in south-western
South Africa and covers an area of 129 370 km? (Winter, 2002).
The province is bordered seaward by the Indian Ocean in the
south and the Atlantic Ocean in the west, while the northern
and eastern parts of the province are bounded by other South
African provinces.

The Western Cape’s topography is complex, ranging
from coastal plains to complex mountain ranges and valleys.
The topography is dominated by the Cape Fold Belt, forming
L-shaped mountain ranges oriented in a north to south and
east to west direction. Three distinct climatic regions, namely,
the Mediterranean, South Coast, and Karoo regions, are rec-
ognisable (Fig. 1). The Mediterranean region, located in the
western and south-western parts of the Western Cape, receives
most of its rainfall during the winter (May to August) (Fig. 2).
This is mainly due to the influence of the cold Benguela cur-
rent of the Atlantic Ocean and the northward displacement of
high-pressure systems during winter, allowing westerly winds
to introduce cold polar air to the region. Winters are mild to
cool, while summers are warm to hot. Although most of the
Mediterranean region’s rainfall is received as prefrontal rain
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Figure 2
Monthly mean (a) precipitation, (b) minimum daily temperature,
and (c) maximum daily temperature for the Mediterranean, South
Coast, and Karoo climatic regions.
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and postfrontal showers, rainfall variability is high due to
heavy orographic rainfalls (South African Weather Bureau,
1996).

In contrast, the South Coast region — extending eastward
from Cape Agulhas — experiences rainfall throughout the
year. Rainfall is principally a result of the movement of moist,
warm air from the Indian Ocean and orographic influences.
As a result, the southern mountain slopes generally receive
more rainfall than the northern slopes. Although the weather
is warm during the summer and mild during winter, a marked
decrease in temperature is experienced with an increase in
altitude. The effect of the Indian Ocean does not extend farther
than the mountain ranges which form a natural divide between
the South Coast and Karoo climate regions. The Karoo region
is confined to the inland plateau of South Africa and receives
most of its rainfall during late summer, mainly in the form of
thundershowers. Rainfall in this semi-arid region is low and
unreliable, while temperatures vary considerably from winter
to summer (South African Weather Bureau, 1996).

Climate surface interpolation

Because an area’s climate is an aggregate of its weather condi-
tions over time (Lutgens and Tarbuck, 1998), reliable climate
data can only be obtained through statistical analyses of
weather observations (Houghton et al., 2001). Unfortunately,
weather stations are often sparsely distributed, especially

in mountainous regions or areas with low population densi-
ties, resulting in vast regions being insufficiently represented
by weather stations. Interpolation methods are frequently
employed to estimate climate data for areas that are near
weather stations. The accuracy of such estimations is a function
of input data accuracy, spatial variability and the interpolation
method employed (Hartkamp et al., 1999).

The quality of weather data, which are the primary source
of input to the interpolation process, will greatly influence the
accuracy of any interpolation. Generally, higher densities of
weather stations will provide better results. Apart from density
considerations, weather data should also represent as long a
period as possible, typically more than 30 years, to reduce the
effect of temporal climate variations.

The type of algorithm used in climate interpolations is
especially important when data are used from sparsely-spread
weather stations. Several interpolation methods, ranging from
deterministic (e.g. Thiessen polygons and inverse distance
weighting) to stochastic (e.g. polynomial regression, trend
surfaces and kriging) have been used to generate climate
rasters. Thin plate splining is, however, recommended in data
sparse areas (Price et al., 2000). Like Kriging, many splining
algorithms also provide predictions of uncertainty (or error
surfaces) that can be used to describe the spatial quality of
the results and incorporate independent variables (or covari-
ates), such as elevation and distance to oceans, to improve the
accuracies of the interpolated surfaces. In addition, splining
is computationally simplistic, which is particularly important
when rasters are created for large areas and/or have high resolu-
tions (Hijmans et al., 2005, Price et al., 2000). These attributes
of splining algorithms are likely to be the reason why they are
often used in interpolation comparative studies and climate
surface creation analyses (Jarvis and Stuart, 2001; Vicente-
Serrano et al., 2003).

The spline method can be conceptualised as fitting a
rubber-sheeted surface through the known points using a math-
ematical function. In fitting surfaces to data points, thin-plate
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smoothing splines determine an optimal trade-off between
accuracy of fit and surface smoothness by minimising the gen-
eralised cross-validation (GCV). The GCV value is an estimate
of the interpolation error obtained by removing each data point
in turn and fitting a spline surface to the remaining data to see
how well each omitted point can be predicted (Hutchinson et
al., 1996).

ANUSPLIN, developed by the Australian National
University (Hutchinson, 2011), is possibly the most popular
thin-plate smoothing spline interpolation algorithm available.
ANUSPLIN has been applied at regional level in New Zeeland
(Tait et al., 2006), Canada (Price et al., 2000), Madagascar
(Chapman, 2000), China, Thailand, Vietnam, Laos, Cambodia
and the Malay Peninsula (Zuo et al., 1996), and Guyana (Funk
and Richardson, 2002). It has also been used to develop conti-
nental-scale climate surfaces for Australia (Jakob et al., 2005;
Jeffrey et al., 2001), Africa (Hutchinson et al., 1996) and North
America (McKenney, 2000), and has more recently been used
for the WorldClim international data set (Hijmans et al., 2005).

Methods

This research involved statistical analyses of climate-related
data and the interpolation of climate surfaces for the Western
Cape. The following sections overview the methods employed.

Climate data collection and preparation

Long-term rainfall and temperature data were collected for
weather stations in and around the Western Cape (see Fig.

1). The main sources of weather station data were the South
African Weather Services (SAWS) and the Agriculture
Research Council (ARC). Stations with collecting periods
shorter than 10 years were not considered, resulting in a

data set for 125 stations and an average collection period of
30 years. Although the overall density of weather stations is
relatively high (1 station for every 2 285 km?), the density is
notably lower in the northern, less-populated parts of the prov-
ince. Consequently, all stations situated up to 100 km outside
the Western Cape were included to enhance the accuracy of
the spline function calculations in the northern parts of the
province.

Weather station data are treated by most climate surface
interpolation algorithms as being dependent on latitude, longi-
tude and elevation (Barringer and Lilburne, 2000). Elevation is
usually incorporated in the interpolation algorithm as a digital
elevation model (DEM). For this purpose, the 3-arc-second
(approximately 90 m) resolution Shuttle Radar Topography
Mission (STRM) DEM (United States Geological Survey,
2006) was used, owing to its high resolution and high degree of
accuracy (Rodriguez et al., 2005).

In addition to elevation, other topographic variables and
factors, such as ocean proximity, can also be used as independ-
ent variables or covariates in the interpolation process (Price
et al., 2004). ArcGIS was used to derive slope gradient, slope
aspect and hillshade from the STRM DEM. The algorithm used
to compute a hillshade value for each cell is R = cos(4,—4)
sin(H /)cos(H)+cos(H/)sin(H ) with R ’ the relative radiance of a
raster cell, 4 /.the aspect of the cell, 4 the sun’s azimuth, H/ the
cell’s slope and H_ the sun’s altitude. R ranges in value from
0 to 1 and is multiplied by a constant 255 to obtain the illumi-
nation value (Chang, 2010). Various hillshades with different
azimuths and sun altitude values were generated using this
method.
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ArcGIS was also used to calculate distances to the nearest
ocean. To do so, coastline data were obtained from the Chief
Directorate: National GeoSpatial Information of South Africa.

All the input data sets were generated at a resolution of 3-arc-
seconds to match the resolution of the input DEM. Although lower
resolutions were considered to reduce computational processing
requirements, it was decided to produce climate surfaces at the
highest possible resolution to eliminate the effects that resampling
might have on the output accuracy. It is, however, unlikely that the
resulting surfaces will be representative of 3-arc-second weather
patterns as other factors, such as land cover, albedo and wind, will
also influence local scale climate variability.

Input variable elimination using correlation analyses

Standard Pearson’s product-moment correlation coefficients
were calculated for each combination of dependent (mean daily
maximum temperature, mean daily minimum temperature,
and mean rainfall) and candidate independent (slope gradient,
slope aspect, distance to oceans, and hillshade, respectively)
variables on a monthly basis. This process enabled the identi-
fication and elimination of candidate input variables that have
no significant relationship with meteorological records. Only
distance to oceans and one variation of hillshade (with 180°
azimuth and 45° altitude) showed significant correlations with
the weather station data. The other candidate variables (slope
gradient, slope aspect and all other variations of hillshade)
were consequently eliminated from further analysis using this
methodology.

Climate surface generation

Only those variables for which a significant correlation with
climate records was found were considered for generat-

ing climate surfaces. Input variables were incorporated in
ANUSPLIN as dependent variables, independent variables or
covariates. Latitude and longitude were defined as independent
variables for all interpolations, while elevation was interpreted
as a covariate instead of independent variable when additional
variables (e.g. distance to oceans) were considered in the inter-
polation (Hutchinson, 2011). Additional variables were also
designated as covariates in such cases. Some input variables
required scaling prior to interpolation. Through experimenta-
tion during preliminary analyses it was found that Hutchinson’s
(1998) square-root transformation of rainfall data produced

the best results. A similar approach was taken to find suit-

able transformations for additional variables. These included
square-root and logarithmic transformations as well as scaling
(multiplication) by 0.001, 0.01. 0.1, 10, 100 and 1 000.

With the purpose of identifying suitable transformations
and units for the additional variables, various possibilities for
the distance to ocean and topography (aspect and slope) varia-
bles were investigated. In order to test the accuracy of the range
of options, ANUSPLIN provides a series of statistical outputs
which can be used for performance analysis (Hutchinson,
1998a; b; Price et al., 2000).

The interpolation of the climate surfaces was carried out
for the entire study area. Splining is a deterministic interpo-
lator with a stochastic component, which means that only a
specified number of neighbouring points are used to determine
an unknown value (Burrough and McDonnel, 1998). It is con-
sequently unlikely that the mesoscale processes in one climate
region will influence the interpolated values of another.

The SPLINA module of ANUSPLIN was used as the
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interpolation algorithm. The configuration of SPLINA was
guided by Hutchinson’s (1998) prescriptions. Second-order
spline functions were used for trivariate models (i.e. those
using only longitude, latitude and elevation as input) and when
a fourth variable was incorporated as a covariate. Third-order
spline functions were used when a fourth variable was included
as independent variable or when a fifth variable was used.

Accuracy assessments

To investigate the effect of the candidate variables on climate
surface interpolation accuracy, all permutations of additional
variables were considered. Sets of 12 interpolations each (one
for each month) were generated from a stratified 80% random
sample of the available weather station data. The sample was
stratified based on the 3 weather station density zones shown
in Fig. 1. Data from the remaining (20%) weather stations were
withheld from the interpolation process and used to calculate
mean error. Error margins of 0.5°C for temperature and 10-30%
for rainfall, as suggested by Hutchinson et al. (1996), were used
as a guideline for accuracy.

The accuracy assessment based on the 20% sample was
supplemented by the interpolation software’s own statisti-
cal outputs for performance analysis (Hutchinson, 1998;
Hutchinson, 1998; Price et al., 2000). These measures included
the root of the generalised cross-validation (RTGCV), the root
of the mean square residual (RTMSR) and the root of the mean
square error (RTMSE). The RTGCV values are conservative
estimates of the overall standard prediction error, as it includes
the data error estimated by the procedure. The RTMSE value
is a prediction of the standard error after the predicted data
error has been removed (Hutchinson, 2011). Signal value was
also used as a measure of interpolation accuracy. The signal
value gives an indication of the degrees of freedom of the fitted
spline. Hutchinson (1998) and Price et al. (2000) propose a sig-
nal value of approximately half the number of data points used
for a second-order splining function. A signal value higher than
80% of the number of data points indicates significant data
errors, lack of data points or a short-range correlation in the
data values (Hutchinson, 1998). These measures were found to
correspond well with mean error calculations (using the 20%
sample) and are consequently not presented in this paper.

Climate surface generation and pair-wise difference
comparisons with existing climate surfaces

The combinations of input variables that produced the low-

est monthly mean errors were used to generate the best sets

of climate surfaces using all available meteorological data.

The resulting Western Cape Climate Surfaces (WCCS) were
compared to the South African Atlas of Agrohydrology and
Climatology (SAAAC) (Schulze, 1997) and WorldClim (Hijmans
et al., 2005) climate surfaces of the study area. Owing to the lim-
ited weather station data that are available for the Western Cape,
it is likely that similar input data were used for interpolating the
WCSS, SAAAC and WorldClim surfaces. Although ANUDEM
was used to interpolate both the WCSS and WorldClim climate
surfaces, the resulting surfaces are not identical, as differ-

ent parameters and combinations of dependent variables were
employed. The SAAAC surfaces are also different, as sub-region
specific multiple regression equations were used for the tem-
perature surfaces (Schulze and Maharaj, 2006), while precipita-
tion was estimated using a geographically-weighted regression
technique (Lynch and Schulze, 2006).
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Results

The results of the accuracy assessments and pair-wise compari-
sons are discussed in the following sections.

Interpolation accuracy

Although all combinations of input variables, transforma-
tions and interpolator configurations were considered in this
research, only those interpolations that had signal values of
less than 80% and overall error margins of less than 0.5°C for
temperature and 30% for rainfall are discussed.

Monthly mean daily maximum temperature

The first interpolation set (A in Table 1) for monthly mean daily
maximum temperatures was generated using sampled monthly
mean daily maximum temperature data, latitude, longitude, and
elevation as input. The results (Table 2) show that an overall
error of 0.41°C is achieved when only latitude, longitude and
elevation are incorporated as independent variables. Adding dis-
tance to oceans as an untransformed additional variable (Model
B) did not improve overall accuracy, although some improve-
ments were observed for months April to September. However, a
significant (21%) improvement in overall accuracy was achieved
when a natural logarithm is used to transform distance to oceans
(Model C). When distance to oceans is scaled to kilometres
prior to applying the logarithmic transformation (Model D), the
overall error is further reduced to 0.29°C — a 29% improvement
compared to Model A. Apart from June, which had a slightly
higher mean error than Model D, all of the monthly interpola-
tions were more accurate than those of the other models used for
interpolating maximum temperature. This suggests that distance
to oceans has a significant influence on maximum daily tempera-
tures in the Western Cape, but that its impact is restricted to a
relatively narrow band along the coast.

Monthly mean daily minimum temperature
Distance to oceans also improved interpolations of monthly

mean daily minimum temperature interpolations. Table 2
shows that overall error is reduced from 0.45°C (Model E) to

Table 1
Interpolation models
Model | Description Climate
output

A Latitude, longitude and elevation Max Temp

B Latitude, longitude, elevation and Max Temp
distance

C Latitude, longitude, elevation and Max Temp
log(distance)

D Latitude, longitude, elevation and Max Temp
log(distance x 0.001)

E Latitude, longitude and elevation Min Temp

F Latitude, longitude, elevation and Min Temp
distance

G Latitude, longitude, elevation and Min Temp
log(distance)

H Latitude, longitude, elevation and Min Temp
log(distance x 0.001)

1 Latitude, longitude and elevation Rainfall

J Latitude, longitude, elevation and Rainfall
distance

K Latitude, longitude, elevation and Rainfall
log(distance)

L Latitude, longitude, elevation and Rainfall
log(distance x 0.001)

M Latitude, longitude, elevation and Rainfall
hillshade

N Latitude, longitude, elevation and Rainfall
hillshade x 10

O Latitude, longitude, elevation and Rainfall
log(hillshade)

P Latitude, longitude, elevation, Rainfall
log(distance) and hillshade x 10

0.4°C when untransformed distance to oceans is incorporated
(Model F). An additional improvement of 0.06°C is achieved
when distance to oceans is transformed using the natural loga-
rithm (Model G). Although no interpolations were possible for
May, August, and September (due to low signal values), Model
G produced the most accurate surfaces for April, June, July,

Table 2
Mean error values for each of the interpolation models assessed
Max temp (°c) Min temp (°c) Rainfall (%) Best combinations
Model| A B C D E F G H | J K L M N (o] P Max | Min | Prec
Temp | Temp | (%)
Q) | (©)
Jan | 0.52 | 0.60 | 0.48 1 0.39 | 0.46 | 0.47 | 0.39 | 0.37 | 14.2 | 13.9 | 11.8 | 11.7 | 12.3 | 11.9 | 12.0 | 12.2 | 0.39 | 0.37 | 11.7
Feb | 0.54 | 0.62 |1 0.48 | 0.40 | 0.46 | 048 | 047 | 0.37 | 14.2 | 134 | 9.5 | 9.5 | 13.7 | 13.3 | 13.3 | 13.1|0.40 | 0.37 | 9.5
Mar | 0.50 | 0.58 | 0.42 | 0.34| 0.47 | 0.50 | 0.41 [ 0.39 | 12.7 | 12.2 | 10.5 | 82 | 123 | 114 | 114 | 11.8 | 0.34| 0.39 | 8.2
Apr | 046 | 0.41 | 0.31 1 0.26 | 0.52 |1 0.3210.30| 044 | 89 | 104 | 91 | 97 | 98 | 92 | 92 | 94 | 0.26 | 0.30 | 8.9
May | 0.35 | 0.27 | 0.22 | 0.22 (| 0.34 | 0.37 | * | 0.51 [ 10.1 | 12.7| 11.3 | 11.6 | 11.3 | 10.8 | 10.8 | 11.5 | 0.22 | 0.34 | 10.1
Jun | 0.27 | 0.23 (0.21|0.22 049 | 0.43]0.33|0.56| 11.3 | 13.7 | 11.7 | 12.1 | 11.8 | 11.1 | 11.1 | 12.1 | 0.21 | 0.33 | 11.1
Jul [ 0.26 | 0.22]0.20|0.20 049|043 |(0.32|0.54| 6.3 [129| 109 | 11.3 | 11.0 | 104 | 10.4 | 11.1 [ 0.20 | 0.32 | 6.3
Aug [ 0.32 (1 0.25(0.220.22 {042 (0.38| * |046|12.0|12.5|109| 11.3 ]| 10.8 (10.3|10.3 | 11.1 | 0.22 | 0.38 | 10.3
Sep | 0.370.34]0.28|0.24|0.30| 032 | * |038|12.8]|137|12.0|13.0| 124 | 11.9 | 11.9 | 11.7 | 0.24 | 0.30 | 11.7
Oct | 0.35|0.44 | 0.34 | 0.27 | 0.50 | 0.30 | 0.26 | 0.37 | 10.7 | 13.0 | 12.8 | 14.2 | 13.8 | 13.3 | 13.3 | 12.5| 0.27 | 0.26 | 10.7
Nov | 0.46 | 0.52 | 0.49 | 0.34 | 0.46 | 0.36 | 0.35| 0.35 | 11.1 * 11.0 | 139 | 12.3 | 12.3 | 12.4 | 10.7 | 0.34 | 0.35 | 10.7
Dec | 0.47 | 0.57 | 0.47 | 0.38 | 0.46 | 0.40 | 0.38 | 0.36 | 12.3 * 152 157|146 | 147 | 147 | 154 | 0.38 | 0.36 | 12.3
Avg | 041 | 04210341 0.29| 045 040|0.34| 043 |10.8| 128 | 11.2 | 11.8 | 12.2| 11.7 | 11.7 | 11.3 | 0.29 | 0.34 | 10.1
* Signal values too low
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Figure 3
Comparison of the (a) WCCS annual mean temperature surface
with those produced by (b) WorldClim and (c) SAAAC
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Figure 4
Comparison of the (a) WCCS annual rainfall surface with
those produced by (b) WorldClim and (c) SAAAC

October and November. Scaling distance to oceans to kilometres
prior to transformation (Model H), produced the most accurate
interpolations for January, February, March, November and
December, but resulted in higher overall mean error values than
Models F and G. From these results it is clear that no single set of
input variables is superior for interpolating monthly mean daily
minimum temperature and that a combination of models will be
required to develop the most accurate surface set.

Monthly mean rainfall

For monthly mean rainfall interpolations, 8§ combinations of
input variables provided results that had signal values of less
than 80% and overall error margins of less than 30% (see Table
2). The first interpolation set (Model I) considered latitude,
longitude and elevation during interpolation and produced an
overall error margin, expressed as a percentage of maximum
monthly rainfall, of 10.8%. This error is at the lower extreme
of the 10-30% error-margin range suggested by Hutchinson
et al. (1996). Introducing distance to oceans as a fourth input
variable (Model J) increases overall error to 12.8%, although
the mean errors of the January through March interpolations
improved slightly compared to Model I. Further improvements
for these months, as well as August, September and November,
are achieved when distance to oceans is transformed logarithmi-
cally (Model K). Scaling distance to oceans to kilometres before
logarithmic transformation (Model L) improved the accuracies
for January and March, but reduced overall accuracy slightly.
Substituting distance to oceans with hillshade (Model M)
also did not improve overall accuracy (compared to previ-
ous models), but superior accuracies were achieved for June,
August and September when hillshade was scaled (multiplied
by 10) prior to interpolation (Model N) or when transformed
using a logarithmic equation (Model O). The investigation into
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the effect of different input variables for interpolating mean
monthly rainfall concluded with Model P in which both dis-
tance to oceans and hillshade were used as input. The results
show that this combination delivered superior interpolations for
only 2 months (September and November). However, in spite of
attempts to use various scaling and transformation techniques
in the input variables, the maximum rainfall error values of the
5-variable interpolation sets (including Model P) were unreal-
istically higher (50%) than the recorded maximum error values.
Given these results it can be concluded that the use of distance
to oceans and topography as additional variables does not
improve the overall interpolation accuracy of rainfall surfaces
in the Western Cape.

The accuracy assessment was used to identify the input
variables that produced the most accurate climate surface for
any given month (highlighted in Table 2). To produce the final
climate surfaces, the variables that produced the best results
for any given month were used to interpolate new monthly
surfaces using the full set of the weather stations (including
the 20% sample that was used for the accuracy assessment) as
input. The overall mean error for each data set was calculated
by averaging the monthly mean errors of the selected surfaces
in Table 2. Consequently, the overall mean error of the result-
ing rainfall surfaces is estimated to be 10.1%, while the mean
error of the minimum and maximum temperature surfaces is
0.29°C and 0.34°C, respectively. This is, however, a conserva-
tive estimation since it reflects the accuracy of the interpola-
tions sets that were generated from an incomplete (80%) set of
input data.

Pair-wise comparison to existing climate surfaces

The monthly climate surfaces were used to compose mean
temperature (Fig. 2a) and annual rainfall (Fig. 3a) surfaces for
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Figure 5
A pair-wise difference comparison of annual rainfall:
(a) WorldClim — WCCS, (b) SAAAC — WCCS and (c) WorldClim — SAAAC

Difference (°C)

- < 25
Wl-25--10
1-1.0--05
[1-05-05
[105-1.0
10-25
25

0 100 200 300 Km

Figure 6
A pair-wise difference comparison of mean temperature:
(a) WorldClim — WCCS, (b) SAAAC — WCCS and (c) WorldClim — SAAAC

the Western Cape. At first glance, the resulting annual rainfall
surface, shown in Fig. 2(a), seems very similar to the corre-
sponding WorldClim and SAAAC surfaces (Figs. 2b and 2c,
respectively). However, the pairwise difference maps (Fig. 4)
reveal a number of deviations. When the WCCS annual rainfall
surface is compared with WorldClim (Fig. 4a), the values of
the WCCS surface is generally higher in the high, mountainous
regions. This positive difference is even more pronounced in
Fig. 4b, which pair-wise compares the WCCS annual rainfall
surface to SAAAC. Although annual rainfall in excess of 2
000 mm is common in the Jonkershoek Mountains east of
Stellenbosch, such high rainfall is unlikely to frequently occur
in the Koue Bokkeveld Mountains north of Ceres. However,

no rainfall stations are available in these high-altitude areas to
verify this.

In contrast to the positive difference of rainfall in the moun-
tainous regions, Ceres itself was interpolated to receive, on aver-
age, 591 mm of rainfall — considerably less than the WorldClim
and SAAAC estimates of 949 mm and 976 mm, respectively.
However, according to the records of the weather station in Ceres
the actual long-term average is 567 mm, indicating that the
WCCS surface is closer to the true rainfall. Similarly, the evident
negative difference of rainfall values in the Worcester region (see
Figs. 3a and 3b), were verified to be consistent with the long-term
weather station records of Worcester.

Another area where there is a noticeable difference in
interpolated annual rainfall is in the southern parts of the Cape
Peninsula near Kommetjie. When compared to the 2 existing
surfaces, it seems that the WCCS rainfall values are generally
lower in this area. Closer inspection revealed that the WCCS
interpolated value at Kommetjie is 572 mm, while the SAAAC
and WorldClim values are 884 mm and 857 mm, respectively.
However, the long-term average of annual rainfall at Kommetjie
(Slanghoek) weather station is 466 mm, which indicates that all 3

Available on website http://www.wrc.org.za
ISSN 0378-4738 (Print) = Water SA Vol. 37 No. 3 July 2011
ISSN 1816-7950 (On-line) = Water SA Vol. 37 No. 3 July 2011

interpolations overestimate rainfall, but that the WCCS interpo-
lation is significantly more accurate in this area.

In terms of mean annual temperature, a significant (>2.5°C)
difference between the WCCS and WorldClim surface is
apparent in the Saldanha region (see Fig. 5a). However, a
similar pattern is observed in Fig. Sc, which suggests that it
is the WorldClim surface that overestimates temperatures in
this coastal region. Unfortunately, this could not be verified
as no weather stations are available in this area (the nearest
being Langebaanweg, which is about 13 km from Saldanha).
Another area in which the WCCS temperature interpolation
deviates significantly from WorldClim’s is in the Tankwa
Karoo and Hantam regions (Fig. 5a), but again there is no way
to verify this, as the 2 weather stations that are present in those
regions have been in operation for less than 5 years (and were
consequently not included in the interpolation of the surfaces).
However, the likelihood of a temperature underestimation in
these areas is higher than in Saldanha because a similar, more
pronounced, pattern is observed when WCCS is compared
to SAAAC (Fig. 5b). In contrast to WCCS’s relatively lower
temperatures in the Tankwa Karoo, temperatures are relatively
high in the south-western Karoo (compare Figs. 5a and 5b).
However, the WCCS interpolated mean temperature at Prince
Albert is 19.1°C, which is consistent with the long-term mean
temperature measurements at Prince Albert (19.6°C). In con-
trast, the SAAAC and WorldClim interpolated temperatures
are lower (16.9°C and 15.8°C, respectively) indicating that the
WCCS interpolation is more accurate in the south-western
Karoo region.

Resolution comparison to existing climate surfaces

The value of WCCS’s high resolution surfaces is only realised
when they are compared to existing climate surfaces at large
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Figure 7
Detail area illustrating the impact of resolution on variation of
mean temperature for (a) WCCS, (b) WorldClim and (c) SAAAC

mapping scales. This is illustrated in Fig. 6, which shows the
WCCS, WorldClim and SAAAC mean temperature surface of
Cape Town. It is clear that the WCCS interpolation represents
much more variation than the other 2 surfaces and that it has

a higher horizontal accuracy. For example, according to Fig.
6¢, the mean temperature at Camps Bay is lower than on Table
Mountain at Fernwood Peak. This error is a direct consequence
of the low resolution of the SAAAC surface (compare with
Figs. 6a and 6b).

Conclusions

The research reported in this paper aimed to determine the
best combination of input variables for interpolating climate
surfaces in the Western Cape. When distance to oceans is
introduced as an additional, transformed input variable for
interpolating monthly mean maximum daily temperatures, the
mean error was reduced by 29%. Clearly, ocean proximity is
an important variable to include when interpolating monthly
mean maximum daily temperatures in the Western Cape.
Interpolation accuracy is also improved for the interpolation
of the monthly mean minimum daily temperature for October
through April when distance to oceans is used as an additional
input variable. By contrast, distance to oceans has little effect
on overall accuracy when included in monthly mean rainfall
interpolations. Similarly, the inclusion of topography (repre-
sented by hillshade with an azimuth of 180°) did not improve
overall interpolation of monthly mean rainfall. It did, however,
produce more accurate rainfall surfaces for 4 months of the
year (April, June, August and September).

Temporal (monthly) differences in interpolation accuracy
were observed in most of the interpolation sets. This indicates
that certain combinations of input variables are suitable for
some months, but not for others. This observation was used
to produce suitable interpolation sets by selecting and com-
bining the input variables that produced the highest monthly
accuracies.

Although most of the interpolation sets generated from
the 80% sample of weather station data had a relatively low
overall mean error, a pair-wise difference comparison of the
re-interpolated surfaces (using all the meteorological data) with
existing climate surfaces revealed some discrepancies. It seems
that the WCCS surface overestimates rainfall in high-altitude
regions, and underestimates temperatures in the Saldanha,
Tankwa Karoo and Hantam regions. These differences could
not be verified due to lack of reference data. However, in the
areas where verification was possible (e.g. Ceres, Worcester,
Kommetjie and Prince Albert), it was found that the WCCS
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interpolation was consistently more accurate than WorldClim
and SAAAC.

In conclusion, this research showed that it is possible to
improve climate surface interpolation accuracy by including
elevation, distance to oceans, and hillshade as additional input
variables and by selecting the most suitable input variable
combinations on a monthly basis. Although a specific interpo-
lation algorithm (ANUSPLIN) was used in this research, it is
likely that the same combinations of input variables will also
improve temperature and rainfall interpolations using other
algorithms. More research is needed to determine if this is the
case. Potentially, the combination of input variables evaluated
in this research will improve climate surface interpolations
in other parts of the world (although this will require further
investigation), but for the Western Cape the higher resolution
and accuracy of the newly-created surfaces will be of particular
value for hydrological research.
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