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Abstract

In this paper, a multi-grid algorithm is applied to a large-scale block matrix that is produced from a Beam and Warming
scheme. The Beam and Warming scheme is used in the simulation of unsteady flow in an open channel. The Gauss-Seidel
block-wise iteration method is used for a smoothing process with a few iterations. It is also shown that the governing
equations determine the type of prolongation and restriction operators for the multi-grid algorithm.
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Introduction

Unsteady flow is of great interest to hydraulic engineers. Such
flows can be described by the Saint-Venant equations which
consist of equations for conservation of mass and momentum.
The Saint-Venant equations are also non-linear hyperbolic
partial differential equations. However, a general closed-form
solution of these equations is not available, except for certain
special simplified conditions, and they must be solved using
an appropriate numerical technique. Among different numeri-
cal methods, the implicit finite-difference method and finite
element method have been widely used for the solution of
1-dimensional unsteady open-channel flow problems (Aureli
et al., 2008; Catellal, 2008; Choi and Molinas, 1993; Jha et al.,
1994; Nguyen and Kawano, 1995; Sen and Garg, 2002; Tseng
and Chu, 2000; Venutelli, 2002).

The discretisation of partial differential equations leads to
very large systems of equations. For 2-dimensional problems,
several 10 thousands of unknowns are not usual, and in 3 spa-
tial dimensions more than 1 million unknowns can be reached
very easily. Therefore, iterative methods like Jacobi or Gauss-
Seidel relaxations have been used. Nevertheless, the main
defect of iterative methods is that these will work very well in
a few iterations, but after that these methods will be converged
slowly. Multi-grid algorithms will solve this problem (Bramble
and Pasciak, 1987; Tavakoli and Kerayechian, 2007; Tavakoli,
2010). Multi-grid methods are the fastest known methods for
the solution of the large systems of equations arising from the
discretisation of partial differential equations (for more details
see Bramble, 1993).

Governing equations
The governing equations based on the conservation of mass

and momentum for 1-dimensional unsteady open-channel
flow in a prismatic channel of arbitrary cross-section can be
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expressed as (see Abbott, 1979; Chaudhry, 1993; Chow, 1959
for details):
Y + oF +S=0 or
ot Ox
where:
t represents time
x represents longitudinal distance

A uAd
U= ; F= ;
uA u’A+gF,

0
S{— $A(S, -5, )} @

where:
A is the cross-sectional area of flow
u the velocity, g the gravitation acceleration
F, the hydrostatic pressure force term
Sfthe friction slope, and S, the bed slope

U,+F. +S=0 )

The friction slope is computed by the Manning formula:

Sy = 3
where:

n_ is the Manning coefficient

R the hydraulic radius.

The hydrostatic pressure force term may be expressed as:

h

F, = [ (h=mW (m)dn @
where:

h is the flow depth
n the integration variable indicating distance from channel
bottom
W(n) the water-surface width at distance # from the channel
bottom

The hydrostatic pressure force term for rectangular and trap-
ezoidal channels becomes:
1 zh’
F,=—bh* +—
h 2 w 3 (5)
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where:
b, is the base width of channel
z the ide slope of the channel.

The governing equations are based on the assumption of
hydrostatic-pressure distribution, incompressibility of water,
sufficiently small bottom slope of the channel, and negligible
wind stress and Coriolis force. Eq. (1) can be expressed in
quasi-linear form as:

ou ou
—+M—+S=0
ot ox ©)
where:
0 1
M=| | ™
—-u"+gD 2u

is the Jacobian matrix and
D = A/W () is the hydraulic depth.

Furthermore, since the matrix M has independent and real
eigen-vectors, it can be written in diagonalised form as:

1{ 1 -1 }Fl 0}{—@[—@ 1}
M=— ®
2clu+c —(u-c)|0 A, |-(u+c) 1

where:
c is the wave celerity expressed as,/gD , and
the A values are eigen-values of M giving the characteristic
directions.

The eigen-values are given by:

Ay=u+c; and A, =u-c ()

The matrix M can now be split into 2 components, positive and
negative, by the testing sign of the eigen-values. This may be
done as follows:

M=M"+M-
where:
10
A =max(4;,0); and i =k (10)

Beam and Warming scheme

The finite-difference approximation for flow variables U at
the higher time level, i.e.: U**!, can be written as (Beam and
Warming, 1976; Chaudhry, 1993; Jha et al., 1994):

: At . 0U ou
U = UF + 251 yk 4 (2yk 1)
5 [( Py )+ Py )]
By substituting the value of U, from Eq. (1) into Eq. (11):
U =Ut 75[(6—F+ S)*! +(5—F+S)"] 12)
2 Ox Ox

The terms F**! and S**! in Eq. (12) are nonlinear and may be
linearised as follows. The Taylor series expansion of F**! may
be written as:

F*' =F" + At(%f)k +0(A1)?

- oF oU 2
=F"* +M(6—U)km
ot

=F" +M(U"' -U")
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Similarly:
Sk — gk +B(Uk+l _Uk) (14)
where:
M and B are the Jacobians of F and S with respect to U,
respectively.

The matrix M in Eq. (7) is replaced in the Eq. (13) and B is
given as:

0 0
B-= dgnluul gnllu | 15)
-85, _W R

Substituting Eqgs. (13) and (14) into Eq. (12) and simplifying

At OF oF
U - U == —[(—+8)"" +(=—+8)*
S IG +9)T +(+8)]

At OF el At OF B
=——(—+S —At+—)(—+8
2(0x+ A 2)({err ) (16)
At _ OF

A s E sy - mE sy
2 ox ox ox

0 FI< +MA UA+1 _UA nFA
- A PE MU U g g a sy
2 ox ox ox
aMi U oM U* A
= —£[¥—M+B‘(U“' —Uk)]—At(Mﬂ+S)k
2 ox ox ox
Therefore:
a MkUkH
U +%[ ( _ )+BkUlc+l]
oxX (17)
oM* Ut
=U"+£[7( )+Bku"]—Az(Ma—U+S)"
2 ox Ox

Introducing the split form of matrix M, as given by Eq. (10),
Eq. (17) is written as

oM* oM~
[I+ﬂ( + +B )F U (18)
2 ox ox
oM* oM~
= [I+ﬂ[(—+ +B ) U* —A[(M* +M’)6—U+S]"
2 ox ox Ox
where:

I =0 (2 X 2) unit matrix.

The expressions in the parentheses before U*"! and U*are
operators on U and U* respectively, not simple products. The
space derivatives associated with positive and negative compo-
nents of M are approximated by backward and forward space
differences, respectively. Therefore:

AM'U) _ MU, -M;,U,,

19
Ox Ax
a(MiU) _ MA‘_+1U[+1 _M[_U[ (20)
ox Ax

Multi-grid algorithms

Multi-grid algorithms have become a common approach for
solving many types of linear problems of the form Gx = b. In
order to describe the multi-grid algorithm, let Q be the domain
of problem (1). To approximate u —j: we consider a sequence
of subintervals (' of Q determined by a regular subdivision;
namely, the set Q is divided into 2 equi-distant subintervals at
levelj=1,2, ..., J. Inaddition, we denote G. as the generated
matrix by Beam-Warming scheme at the level j and at the finest
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level Jj =Jwe define G, = G. Moreover, we consider

Q7 5> Q/ asan operator from the coarse grid Q"' to the
ﬁne grid (. Furthermore, we define R as a smoothing operator
for level j. For example, in the Jacobi relaxation scheme, R, is
defined Dj." where D, is the diagonal matrix of G. We denote an
approximation of the exact solution x by v and the error,
e =x —v by e. Defining the residual by » = b — Gv, we observe
the critical relationship known as the residual equation,
namely Ge = r. In brief, there is a recursive application of the
2-grid process. First, an iterative method such as the Jacobi
or Richardson relaxation is applied to the fine-grid problem.
These iterations have the property that after relaxation the
error will be smooth. This in turn means that the error can be
accurately represented on a coarse grid. Since the coarse grid
is much smaller than the fine grid, it is much less expensive to
work on the coarse grid. These facts permit the second part of
the process, known as the coarse-grid correction. The fine-grid
residual # at the level j is computed and restricted to the coarse
grid #~' = [/"'¥/ at the level j—1, where it is used as the right-
hand side of the coarse-grid residual equation GHe/" =p
This equation is solved and the error thus determined is then
interpolated back to the fine grid, where it is used to correct the
fine-grid approximation, v/ < v/ + 1j,1@”]~ By recursively solving
the coarse-grid equation with this 2-grid process, a multi-grid
algorithm is defined. Now we are ready to state the multi-grid
algorithm (Bramble and Pasciak, 1987; Bramble et al., 1991).

Multi-grid algorithm

MG(j, x°, bj) is the approximate solution of the equation
Gx=bj

Obtained from the j* level iteration with initial guess x°. At the
finest level J, set b =band G =G

For j =0, MG(O x9, bo) is the solution obtained from a
direct method. In other words,

MG(0,x° by) = Gy'b,.

We note that by is determined recursively by Step (2) in the
following error correction step. For j = 1, MG(j, x°, b;) is
obtained recursively in 7 steps.

Pre-smoothing step:
1. Define x' for/ =1,...,m by
I - I-1
X =x"+R,(b;-Gx7).
Error correction step:
2. Sethj_; = I].]_l(b]- — Gjx™). (Transformation of residual
from fine grid j to coarse grid j — 1.)
3. Setq® =

4. (Solving the residual equation) For i =1, ...,
error corrector

q' = MG(j — 1,¢""%, bj_4).
If the residual equation in Step (4) is not solvable directly,
set j := j — 1 and go to Step (2). Otherwise:
5. Define x™*1 = x™ + 1].]'_1qp
Post-smoothing step:
6. Define x! forl =m+1,...,2m by
xM=x+ R.(b; - ijl).
If j#],setm:=2m+ 1 and go to Step (5). Otherwise:
7. Define MG(],x%b) = x?™,

p defines
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In this algorithm, m is a positive integer which may vary
from level to level and determines the number of pre- and post-
smoothing iterations. If p = 1, we have a V-cycle multi-grid
algorithm. If p =2 , we have a W-cycle algorithm. A variable
V-cycle algorithm is one in which the number of smoothing
m increases exponentially as j decreases (i.e., p = 1 and
m = 277). The above multi-grid is called a symmetric multi-grid
algorithm. If the post-smoothing step is removed, it is called a
non-symmetric multi-grid algorithm.

Block multi-grid algorithm for Beam-Warming
scheme

The differential equation can aid in forming a prolongation
operator (Trottenberg et al., 2001). In this section, we use the
Beam-Warming scheme to form the interpolation (prolong-
ation) operator. To this end, let 17, : Q’ ' — Q’ be a mapping
from the coarse grid Q! to the fine grid (¥. We also assume

that: ; ; ;
T A R e e
Voo | [ V2 Vio
yi

are defined on ¥ and /!, respectively. To construct the
prolongation operator, the values of coarse-grid points will be
transformed unchanged, i.e.:

Vgi 1 Vij;l
B _ B 21
Vain Via

. _h .
for 0<i<—. To construct a non-standard mapping on the
middle points, one can use the Beam-Warming scheme. For
this purpose, we first denote w* as the value of wat time #,:

Jj _
[v2i+1,1] + E(M;Hl =M
Ax

J 2
Jj
Vait1,1
+ BZi+1) [ jl ]

v2i+1,2

Vaiv12] (22)
At - 1]é'+2,1
= SAw <M21+z [ n
21+2 2
~ le[ mD
2
Hence, by Egs. (21) and (22) we have:
Jj _
Vyivr1| At I+ At M1 — Myiiq
vl T 2Ax Ax
2i+1,2
-1 ] 1
+ BZ'+1)k] <(M2 +2)k[ i+1, 1:|
L Bl /v G
vt
k|7it
Viz
In addition, the restriction operator, / ;-1 =2(1 j’ N

is used.

Remark: It is clear that the number of required arithmetic
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operations to construct this operator is more expensive than
the standard operator. However, this is not so important
because, the inter-grid transfer operators are only constructed
once. The expense of running some systems by the multi-grid
Beam-Warming scheme involving this new inter-grid transfer
operator is much lower than for the ones involving standard
operators.

Now, we want to give an extension of the above inter-grid
transfer operator to a 2- dimensional case. To this end, let us
consider (®) as the coarse grid points (see Fig. 1). We note that
any vector u :E Lis defined on the grid points. A prolongation
operator from Sohrse level j — 1 to the fine level j can be given
by:

v/ (xy) =

v (x,y) for @
%[Uj-l(x,y+Ay) + v x,y — AY)] for ]
%[vf‘l(x +A0x,y) + v (x — Ax,y)|  for A

Also, constructing a non-standard mapping on (©) can be done
in a way similar to Eq. (23).

|

.f’-:ﬁﬂ

b

N

- Q ------- ' — Q ------- n

.A:..L‘X
Figure 1

A fine grid with symbols indicating the bilinear interpolation
used for the transfer from the coarse grid ()

Gauss-Seidel block-wise type iteration
(relaxation)

In this subsection, we state a smoothing iteration for the Beam-
Warming scheme. First, we note that the structure of matrix G
in the Beam-Warming scheme (Eq. (18)) is as follows:

- X
x
X X X X X X
X X X X X X
X X X X X X
X X X X X X
G =
X X X X X X
X X X X X X
X X X X X X
X X X X X X
x
L X,
Therefore, the matrix G can be shown
[P 1
|E2 D, F, |
co| B D R |
| |
{ En-1 Dny Fa J
Dy,
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where:D;,i = 1,2, ...,n, and E;, F;,i =2,3,...,n are2x2
matrices.

Let us to denote X = [X;,X,,+,X,]T and b = [by, by, -+, by |7
which X; nd b; are 2 x 1 vectors. Now, in order to apply the
smoothing iterations for Beam-Warming scheme, one can use
the Gauss-Seidel block-wise iteration for the system GX = b by:

XO=xED 4+ (D-E)(b-6xWV), 1=12, (24

where: 0
Dl [ _Ez 0 l

—E; 0 |

—E,_,1 0
| "0 ol
We note that D — F is a lower triangular bi-diagonal matrix
and its inverse is easily computable. A simplified form of the
above Gauss-Seidel block-wise iteration for the Beam-Warming
scheme reads as follows:

Gauss-Seidel block-wise algorithm for Beam-
Warming scheme

1. X@ =9

2. for 1 =1,2,

3. X = p{th,

4. x® = p;ip,

5. for i=23,-,n—1

6. Xi(l) = Di‘l(FiXi(i]D - EiXi(i)
7. end

8. end

Now, in order to clarify multi-grid algorithm for Beam-
Warming scheme, we present the 2-grid algorithm as follows:

Two-grid algorithm for Beam-Warming scheme
(system of G; X = b)

. Setx©® =0

N

Define X® forl = 1,--,m by

X0 =xED 4 (D - E)Y(b - G X)),

3. Setry; = b—Gx™,

4. 1y = I (transformation of the residual from the fine
level to the coarse level)

5. Solve Gyey = 1, directly (i.e. ey = Gy 1) (solving the
system at the coarse level directly)

6. Set e, = Ite,. (transformation of the solution in the coarse
grid to the fine grid)

7. x+D = x(M) 4 e (modifying of the initial solution in
the fine grid)

8. Define XO forl =m + 1,-,2m by:

XG0 =xO 4+ (D - E)Y(b - G,XD)

In the above algorithm, as already mentioned, G and G,
denote the system produced by the Beam-Warming scheme

in the coarse and fine grids, respectively. We recall that other
relaxation schemes such as incomplete LU factorisation can be
applied here.
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Numerical applications

In order to evaluate the accuracy of the block multi-grid algo-
rithm for the Beam-Warming scheme, we first solved a classic
open-channel shock wave propagation problem. The numeri-
cal properties were analysed and illustrated by 2 different
examples. Both examples were solved by Matlab 7.5. Since
in the high levels (level 3 upwards), matrix G (which it is
obtained by the Beam and Warming scheme) cannot be stored
in the computer, we stored matrix G by some block matrices
whose numbers depend on the level they are in. Therefore,
there is no explicit matrix G and there are merely a number
of block matrices, the combinations of which would create
matrix G.

In both examples, the V-cycle algorithm is used, in which
the number of iterations in pre- and post-smoothing processes
has been taken as m = 2 for each level ;.

for different times from level j=3 to j=8. As we can see,
when the level increases, the value of error decreases signifi-
cantly. In addition, we examined this example without the
multi-grid scheme. The CPU time concerning the perfor-
mance in Example 1 by the MGBW and FDBW schemes at
200 s is given in Table 2. The stop criterion for FDBW is

1% - x||, < 10-5. In Table 2, MGBW and SMG denote the
Beam-Warming and standard inter-grid transfer operators
applied to the Gauss-Seidel algorithm, respectively. The
standard inter-grid transfer operator that we used is the
injection operator. As we observe, the CPU time decreases
significantly from level 4 to the end when we use multi-
grid scheme. Moreover, in the second and third columns we
see that the MGBW algorithm is run faster than the SMG
algorithm. Table 2 shows the efficiency of the multi-grid
algorithm, clearly.

Level=2 Level=4

Example 1 05 55
[} 8
The hydraulic events following the sudden closure 5 L8
of a gate in a channel are important for designing s, s,
power channels. For example, the gates of a power o w
channel may be closed instantaneously, which causes 5 s
an increase in the flow depth. In these situations, o5 ) ‘ ‘ ‘ as ‘ ‘ ‘ ‘
the knowledge Of the helght Of the resultlng Surge IS 1000 2000 i 3000 4000 5000 a 1000 2000 ) 3000 4000 5000
essential for designing a channel.
In this example, the performance of the multi- 3 Leve ™ 5 i
grid Beam and Warming (MGBW) scheme for 85 85
surge propagation due to sudden closure of a gate 8 5
is examined in comparison with the exact solution.  _ ;s 75
We considered a channel with a rectangular cross- = . s,
section, the bottom of which is 6.1 m wide. The 55 55
initial conditions in the channel are: 5.79 m deep 5 5
Wlth a Steady diSCharge Of 126 m30S71. The Channel SISU 1000 2000 3000 4000 5000 55El 1000 2000 3000 4000 5000

is horizontal and frictionless with a length of 5 km.
The water surface level in the reservoir is con-
stant at the upstream end and the sluice gate at the
downstream end of the channel is suddenly closed
at time 7= 0.

Figure 2 shows the simulated results by

) —— meEW #(m)
=mExack

Figure 2
Comparison of simulated results (MGBW scheme) and
exact solution for upstream propagating surge

the MGBW scheme with the exact solution % @ g ©
(Featherstone and Nalluri, 1995) just 90 s after e . }r
gate closure for different levels. The finest level is 5 5 !
considered J=8, and also at the coarsest level, the L 7 |
grid size in space Ax and in time Af are taken as =, = i
25 m and 2.2514 s, respectively. Hence, the system @ o ‘
produced by the Beam-Warming scheme at the ¢ 2
coarsest level (J=1) has 202 x 202, and at the finest . . } . . . . . . .
leVel (J:8) 25 602 X 25 602 dimensiOnS at any tlme 1000 2000 & 3000 4000 5000 0 1000 2000 e 3000 4000 5000
level. It can be seen that the MGBW scheme is in a
good agreement with the exact solution. Figure 3 9 i 9 £
shows the simulated results by the finite-difference 85 85 |
Beam and Warming (FDBW) scheme (Chaudhry, 8 8 |
1993) with the exact solution. In this figure, we 75 15 |
considered (a) Ax = 25 and At = 2.2514, (b) Ax = s, s, i
12.5 and At = 1.1257, (c) Ax = 6.25 and At = 0.5629, 55 55 }
(d) Ax =3.125 and At = 0.2814. Figures 3a, 3b, 3c s = 1
and 3d correspond to levels 1, 2, 3 and 4 of MGBW o e

. . . 1} 1000 2000 3000 4000 5000 1} 1000 2000 3000 4000 5000
scheme, respectively. In this example, the simu- ) " st
lated results are satisfactory and hence this scheme ———
is valid. Let and be the approximated solution Figure 3

obtained by MGBW and exact solution, respec-

tively. Table 1 shows the Euclidean error norm||X - x|,
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Comparison of simulated results (FDBW scheme) and
exact solution for upstream propagating surge
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Table 1
Results concerning the performance of the
MG algorithm with respect to mesh size

Level j t=100s t=150s t=200s

j=3 2.4361e-02 6.5627e-02 1.2447e-03
j=4 3.4622¢-04 8.5918¢-04 1.2550e-03
j=35 3.3473e-06 9.5326e-06 2.4411e-05
j=6 1.0322¢-09 7.4017e-09 5.2840e-08
j=7 4.4675e-12 9.8210e-11 1.9052e-10
j=8 6.5609¢-14 1.2322e-13 2.0201e-13

Table 2

The CPU time concerning Example 1 with
and without multi-grid algorithm at 200 s

Level j FDBW MGBW SMG
j=4 2.3510e+003 700.8330 745.3467
=5 4.6852¢+003 2.3312e+003 2.6713e+003
j=6 7.30437e+003 3.6047e+003 3.9542e+003
j=7 1.4402 e+004 9.2874e+003 9.6466e+003
j=8 2.2064e+004 1.6467¢+004 1.9452e+004
Example 2

Because flood waves normally have a rising limb, a falling limb
and a single peak similar to a triangular hydrograph, the latter
is usually used as an input function for flood routing analysis.
This example is presented for a case of subcritical flow in a
rectangular channel with the length of L =20 km, width of 6 m,
uniform bottom slope of S, = 0.00193 and a roughness defined
by the Manning n, = 0.025 m"*s. Also, uniform flow with a
depth of 0.5 m and velocity corresponding to Froude number
F _=0.5 are considered for the initial conditions. The upstream
boundary conditions are defined by a triangular hydrograph
0O = Q(t) which changes linearly from 3 to 21.57 m*s™ in 600 s
and then decreases to 3 m*s™, again in 600 s. The downstream
boundary conditions are: & = h(?) = const.

In Fig. 4, O = QO(#) for the sections x =1 000 and 2 000 m
at the level j=3 with Ax = 10 m and Az =3 s, is given by the
MGBW and FDBW schemes. Hence, the system resulting from
the Beam-Warming scheme at the coarsest level (J=1) has 1002
x 1002, and at the finest level (J=8), 128002 x 128002 dimen-
sions at any time level. The CPU time for Example 2 by the

(a) MGEW scheme

MGBW and FDBW schemes at 200 s is given in Table 3. We
considered n=500 iterations for the FDBW scheme in any time.
Table 3 shows that the MGBW scheme is run faster than the
FDBW scheme.

Table 3
The CPU time for Example 2 by the multi-

grid algorithm and finite difference scheme

at 200 s

FDBW MGBW

Level CPU CPU
j=4 9.2510e+003 2.1746e+003
j=5 1.6852e+004 6.9285e+003
j=6 5.3043e+004 1.3908e+004
j=7 8.8402 e+004 5.0195e¢+004
j=8 2.2964e+005 8.4840e+004

Conclusions

This paper presents a numerical analysis of the MGBW scheme
applied to the complete Saint-Venant equations written for
1-dimensional unsteady flow. Solving the Saint-Venant problem
by the Beam and Warming scheme concludes a linear system

Gx = b. In order to find a good solution, we need to use a very
small size for the grid in terms of space (Ax) and time (Af). Then,
the dimension of G would be very large and saving this matrix in
a computer is impossible. Hence, most of the iterative methods
cannot be used. MGBW has been used to solve the problem. The
main factor that influences the convergence rate of the multi-grid
continuation algorithms is the distance between the solutions
provided by different meshes. MGBW significantly reduces

the computational time. The MGBW scheme may be expected

to give accurate results for other unsteady open-channel flow
problems, such as those involving propagation of a flood wave in
a natural stream or flow in a transition.
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