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Abstract

Filter media sphericity is normally determined experimentally in a laboratory filtration column. The pressure drop is meas-
ured across a bed of known depth while the filtration rate is kept constant. The sphericity is then calculated from a theoreti-
cal headloss relationship using the Ergun equation. This paper proposes a method along similar lines, but suggests a much
simpler experimental procedure. Instead of having to maintain a constant flow rate and measuring both the flow rate and the
pressure, the column is filled and the water then allowed to drain through the bed. The only measurement to be taken is the
time it takes for the water level to drop through a known distance, which is called a falling-head procedure. The full theo-
retical development of the method is provided, as well as a detailed experimental procedure. The practicality of the method
is demonstrated with tests performed on a variety of filter media, and a fully-worked example is presented.
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Introduction

Rapid gravity filtration is the backbone of phase separation
at most water treatment plants in South Africa. The core of
filtration is a layer of granular filter media, mostly silica sand,
which offers resistance to the flow of water through the media
bed during filtration, and also expands during backwash. Filter
designers need to predict the head loss through the filter beds,
as well as predicting fluidisation and expansion of the media
bed during backwash. The design models for head loss, fluidi-
sation and expansion all include the sphericity (or roundness)
of the media grains as an important variable controlling the
behaviour of the media.

Numerous definitions were proposed to express the degree
of roundness of a solid object. A review by Ceronio (1997)
concluded that the surface ratio sphericity is the definition
most suited and commonly accepted for filter media. This is
defined as a ratio:

surface area of a sphere with equal volume

surface ratio sphericity y -
surface area of grain

It is quite easy to calculate the surface ratio sphericity (simply
referred to as ‘sphericity’ in the remainder of the paper) of a
single object with a defined shape. A perfect sphere, for exam-
ple, will have a sphericity of 1.00, while a cube and a typical
sheet of paper will have sphericities of 0.81 and 0.015 respec-
tively. The challenge to the filter designer, however, is to find
the average sphericity of a filter bed which typically contains
about 3000 million grains per cubic metre. Practically, spheric-
ity can be tested in a number of ways:
* By comparing a number of grains through a stereoscope
and matching with a printed guideline (Fair et al., 1968).
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This method had been used on many different media
types at the Water Research Group of the University of
Johannesburg (UJWRG) and yielded results which were
consistently too high.

* By measuring the rate at which a sand grain sinks in water,
and using this value to calibrate the shape factor in a
modified Stokes equation. This test has to be repeated for
many different grains to get a statistically robust estimate.
Moreover, there is no direct mathematical link between the
shape factor from this test and the surface ratio sphericity.

* By measuring the expansion of a media sample in a test col-
umn at different flow rates, and then using this expansion to
determine the sphericity from one of the expansion models
(e.g., the model of Dharmarajah and Cleasby, 1986; or the
recently proposed model of Soyer and Akgiray, 2009).

* By measuring the head loss through a media sample in a
test column, and then using this head loss to determine
the sphericity from one of the head loss models (e.g., the
model of Ergun, presented in AWWA, 1990; or the model
of Trussell and Chang, 1999).

The aim of this paper is to present a simple method, easily
performed with a minimum of equipment, to bring the meas-
urement of media sphericity within easy reach of design
engineers and treatment plant managers. The point of depar-
ture for this paper will be the measurement of head loss, then
obtaining the sphericity from the Ergun equation. Instead of
conducting the test in a conventional manner at a constant
flow rate, which requires flow regulation and the measurement
of flow rate as well as headloss, a falling-head test will be
developed which only requires the measurement of the time

it takes for the water level to drop over a known distance. It
should be noted that the results should be identical, whether
the test is performed at a constant flow rate or with a fall-

ing head. The advantage of the proposed method is that it is
simpler and quicker to perform. The data analysis, however, is
more complicated, so the theory required will be fully devel-
oped with a worked example.
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The Ergun equation

The Ergun equation reads (AW WA, 1990, p. 465):

ho_ {150#(1—6)},, N {175(1—5)% )

L p.g.d .y’ ¢ g.d.y.¢&
with:

h = headloss through media bed (m)

L = depth of media bed (m)

V= filtration rate (ms™)

¢ = media bed porosity “)

w = average surface area sphericity (-)

d = geometric grain diameter (m)

g = gravitational acceleration (m's?)

p = density of water (kg'm™)

1 = dynamic viscosity of water  (kg'm'-s™)

The attractive feature of the Ergun equation is that it has both
laminar and turbulent terms. The Reynolds number for filtra-
tion is calculated as:

Re = 2= d.v @

U
For a bed of filter media, where the interstitial spaces cover a
broad range in terms of their size and tortuosity, there is not
a sharp, predictable transition between laminar and turbulent
flow as in the well-known example of pipe flow. This is evi-
denced by a broad transition range for the Reynolds number
reported in the literature. Typical rapid gravity filtration rates
lead to Reynolds numbers which are in the transition zone.
The use of the Ergun equation, which automatically accounts
for both laminar and turbulent flow components, is therefore
strongly recommended above some other models which only
include laminar terms.

How does one find the geometric grain diameter of a mixed
media bed with a range of grain sizes? Filter sand is specified accord-
ing to its grain size distribution and sieve analyses are routinely and
easily performed. From such a sieve analysis, which typically splits
the sample into about 5 to 8 size fractions, the geometric mean of the
passing and retaining sieve sizes is calculated for each fraction:

geometricd = \/sieve size above X sieve size below 3)

For each fraction, its fractional mass contribution o, can be

calculated:
a = (fraction through sieve above)

~ (fraction through sieve below ) )

The Ergun equation is now applied to each of the fractions

in turn, by assuming that each fraction has a depth of a-L.
Importantly, it is also assumed that the grain sphericity of all
the fractions are the same — an assumption to be verified later
in the paper. The result is the working equation used by design
engineers for estimating the headloss through filter media:

- {150.;1.(1—5)2.?'204.1/

p.gy’.e | Fd )
175.(1-¢). L 21 .
g.y.& o d,

Media grain density

The density of the media grains, required in the next step for
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calculating media porosity, is measured by pouring a previ-

ously dried and weighed sample into a measuring cylinder

partially filled with water. The mass is already known, the

grain volume is determined from the volume displacement in

the cylinder and the density is thus directly calculated. From

routine tests done at the UYWRG over about 15 years, typical

values for media density are:

» For good quality clean silica sand, the density is typically
in the range between 2 450 and 2 650 kg'm?.

»  With extensive amorphous calcium carbonate deposits on
silica sand, the density could be as low as 2 200 kg'm?

* A typical value for filter-grade anthracite is 1400 kg'm-.

Media bed porosity

The porosity of a randomly-packed media bed typically var-
ies between 0.45 and 0.55. Although this range may seem to
be rather narrow, the Ergun equation shows that the headloss
is strongly dependent on porosity — a porosity of 0.45 will

lead to a headloss 2 to 3 times higher than a porosity of 0.55.
Moreover, the porosity of a bed is not a constant. A media

bed which is gently settled after bed expansion in a test filter,
will compact by as much as 10% after a single sharp tap to

the side of the filter, which translates to a significant reduction
in porosity. For the determination of sphericity, however, it is
only important to know what the porosity is at the time of the
falling-head test. It is therefore suggested that the media sample
is dried and weighed before it is transferred to the test column.
After the test is performed, the exact media bed depth is meas-
ured. The actual in situ porosity for the test is then determined
from:

e = 1 4.M
TPy DL ©
with
M = mass of media sample used in test (kg)
P erain density of media grains (kg'm?)
D = diameter of test column (m)

Water density and viscosity

Both the density and viscosity of the water can be reliably esti-
mated from the water temperature. The following polynomials

were fitted by the authors to values reported in Lide (2004) and
are within 0.002% for density and 0.01% for dynamic viscosity:

p = 3.9747x107°x 7> — 7.80287x10>xT?

+5.7862x10xT + 999.8593 )
i = 1.6416x107"°xT* —2.32333x10°x 7" - ®)
+1.48708x10°xT? — 6.13117x10 7 xT +1.793x107*
with
p = density (kg'm?)
u = dynamic viscosity (kgm™sT)
T = water temperature (°C)

The proposed falling-head test

A test column is required for the test, schematically indicated
in Fig. 1. The column has 2 marks — one about 1 000 mm above
the overflow level and the other about 100 mm above the over-
flow level. Each falling-head test has 2 parts. In the 1* part, the
test is performed without any media. From the time it takes for
the water level to drop between the marks as it flows through
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Figure 1
Schematic layout of test column

the empty column test, the resistance offered by the outlet
piping and the media support grid can be quantified. In the 2"
part, the same test is repeated, but this time with the media in
the column. By the mathematical analysis which follows, the
media sphericity can be calculated. A detailed procedure for
performing the test is suggested in Appendix A.

Solving for the sphericity from the falling-head
test

The water flowing through the test column does not only have
to overcome the resistance of the media bed, but also the resist-
ance offered by the media support system and outlet piping of
the column. These non-media losses are turbulent and take the
form:

B o= C.V? ©)
In the case of a falling head, where the filtration rate varies as
the water level drops, the filtration rate is expressed as dA/d¢,
leading to a differential equation:

2

W= c.(ﬁj (10)
dt

The solution of this differential equation allows the estimation

of C by using the time it takes for the water level to drop from
the top mark to the bottom m;drk:

= (2.\/;1{—\/2} (11

This falling-head determination of the non-media losses is
superior to the constant-rate method. The non-media losses are
normally small in relation to the media losses and are diffi-
cult to determine accurately in the constant-rate method. The
time measurement of the falling-head method is much more
accurate.

When the column is filled with media, the total head
encountered by the water flowing out of the column is the sum
of resistance offered by the media and the outlet piping. By
adding equations (5) and (10), a 1*-order differential equa-
tion follows, in terms of the constants A, B and C which are
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independently determined for each test:

2
h = izﬁ + [B-ﬁ-C].(dhj (12)
v dt v dt
2 n
4 - 150.,u.(1—83) L Ziz 13)
p.g.€ o d;
s - {1.75.(1—35).L}zai (14)
g.¢ = d,

The solution to this differential equation is given by:

-1
hy 2
t = 2.(£+CJ.I \/‘44+4.h.[B+Cj - Al
v AR R4 v 4
(15)

The above integral does not offer an analytical solution and has
to be evaluated numerically. For the work reported further on
in this paper, Simpson’s rule was applied with 10 intervals to
allow a solution for the sphericity y, and the ‘Goal Seek’ func-
tion of Excel was used to evaluate the sphericity.

Verification of the proposed procedure
Experimental equipment

The tests were conducted in a clear polyethylene tube with

an inside diameter of 67 mm. The media was supported on a
fine stainless steel mesh with an approximate aperture size of
1.2 um, which in turn rested on a coarser, stiff stainless grid
with an approximate aperture size of 1.5 mm. The column
extended to about 200 mm below the media support grids

and this under-floor volume was filled with glass marbles to
equalise the flow patterns in the under-floor volume. A single
connection allowed water in or out of the under-floor volume.
This connection led to both the overflow pipe (which could be
blocked or opened with a rubber stopper) and the inlet hose
(which could be opened or closed with a valve from the munici-
pal connection).

The overflow pipe was installed such that its top was about
250 mm above the media support grid, which determines the
maximum media bed depth that can be tested. For all the tests
conducted, the actual bed depth was between 100 mm and
140 mm.

The top and bottom marks in the column, used to deter-
mine the start and stop of the falling-head test, respectively,
were 1 103 mm and 103 mm above the top of the overflow pipe.
The difference of 1 000 mm allowed a reliable estimate of the
time taken for the falling-head test. As the flow rate decreases
significantly when the water level in the column approaches the
level of the overflow pipe, the bottom mark should not be less
than about 100 mm above the top of the overflow pipe, to limit
the drain-down time to a reasonable value. For accurate results,
it is necessary to consider the height of the water above the top
of the overflow pipe. This can be obtained by direct measure-
ment during the falling-head test. The diameter of the overflow
pipe used is 20 mm. For the tests reported in this paper, the
overflow height during the empty bed test varied from 25 mm
when the water was at the top mark and 5 mm when the water
was at the bottom mark. The corresponding values when the
column was filled with media were 7 mm and 2 mm.

Media samples

The procedure was tested on 2 media samples, listed in Table 1.
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Table 1
Media samples for experimental work
Number | Name Source Notes
1 Glass ballotini | Commercial As used in general laboratory applications.
2 Fine media Media supplier | Supplied after a request for fine media.
Medium media |Media supplier | Supplied after a request for medium-sized
media. Fine media 1 and 2 are from the
3A 0.50 - 0.85 mm same supplier and silica deposit, but pre-
3B 0.50 - 0.60 mm pared with different industrial screens. This
3C 0.60 - 0.70 mm sample was separated into the 4 size classes
3D 0.70 - 0.85 mm before analysis.
New media Full-scale plant | Media in use for about 2 yr with no visual
evidence of calcium carbonate deposition.
4A Sample 1 Samples 4A and 4B independently drawn
4B Sample 2 from laboratory stockpile.
Old media Full-scale plant | Media in use for about 15 yr with visual
evidence of calcium carbonate deposition.
S5A Sample 1 Samples 5A and 5B independently drawn
5B Sample 2 from laboratory stockpile.

Figure 2
Photomicrographs of media samples

The 5 samples were further subdivided as shown to yield a total
of 10 sub-samples. Sieve analyses were performed, 1 test for
each sub-sample, and the per cent recovery from the sieves was
in all cases higher than 99%. For each sub-sample, the density
of the media was measured with 5 replicates to obtain the aver-
age. Each test commenced with an empty bed test in triplicate,
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Table 2
Density and size analyses for media samples
Number | Density Recovery d, dg, dg,/d,,
(kg'm-) | from sieves | (um) (um) (-)

1 2 450 99.94% 608 728 1.20
2 2 610 99.99% 332 492 1.48
3A 2 630 99.99% 652 868 1.33
4A 2 636 99.77% 630 877 1.39
5B 2 440 99.96% 692 1476 | 2.13

after which the column constant C was calculated from the
average. After each of the sub-samples had been placed in
the column, 5 consecutive tests were performed as detailed in
Appendix A, each with a slightly different bed height and thus
media porosity. This yielded a total of 49 independent spheric-
ity values (1 test on Sample 5B was unintentionally omitted).
To provide a more intuitive grasp of the different media
types, Fig. 2 shows a collage of photomicrographs, all at
exactly the same magnification.

Results

For the total of 24 independent density determinations, the
standard deviation was 1.0% from the average. The average
values for each sample are shown in Table 2. There was no
statistically significant difference (o = 5%) between Samples 2
and 3, which is supported by the observation that these samples
were drawn and processed from the same geological deposit.
The difference between Samples 4 and 5 was statistically
highly significant, showing that the deposition of amorphous
calcium carbonate caused a measurable reduction in density.

From the sieve analyses, the 10" and 60" size percentile
values were estimated by linear interpolation. The effective
size (d,,) for all the samples was about the same, with the
exception of Sample 2. The uniformity coefficient (d,/d,,)
for filter media is normally specified to be less than 1.4. The
calcium carbonate deposition on Sample 5 has a marked and
detrimental influence on the uniformity coefficient.

The tests were performed with municipal tap water during
the months of May to July 2007, with the temperature ranging
from 13.0°C to 18.5°C. For each test, the density and viscosity
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Table 3
Sphericity of media samples
Sample # 1 2 3A 3B 3C 3D 4A 4B 5A 5B
Measured sphericity 0.969 0.735 0.709 | 0.700 | 0.699 | 0.692 | 0.724 | 0.664 | 0.719 0.709
0979 | 0.726 | 0.683 0.693 0.703 0.705 0.730 | 0.696 0.759 0.745
0982 | 0.726 | 0.705 0.701 0.706 | 0.697 0.711 0.727 0.712 0.764
1.000 | 0.729 0.710 | 0.682 0.731 0.691 0.729 0.710 0.725 0.771
1.008 0.721 0.694 | 0.686 | 0.723 0.715 0.677 | 0.724 0.721
Average 0.988 0.727 0.700 | 0.700 | 0.712 0.692 0.714 0.704 | 0.727 0.747
Standard deviation 0.016 | 0.005 | 0.012 0.010 0.014 | 0.008 | 0.022 | 0.026 | 0.018 0.028
Coefficient of variation 1.6% 0.7% 1.6% 1.4% 1.9% 1.2% 3.1% 3.6% 2.5% 3.7%
values were calculated from the measured temperature. Conclusion

The column constant C for the column used varied between
239 and 301 s>m™. This fairly large scatter could not be related
to any systematic cause, and was presumably the result of the
slight blockage of the media support mesh by small grains
remaining after a media sample was washed out. It is therefore
suggested to conduct the empty bed test with every sample to
be tested, it being a quick and easy preventative step.

The porosity of the media in the test column was deliber-
ately varied for each of the sub-samples by controlled tapping
of the column (see the detailed procedure in Appendix A). For
the silica samples analysed, the porosities all fell within a fairly
narrow band of 0.46 to 0.53 with an average of 0.49. Sample 1
(the glass ballotini) had a significantly lower porosity range of
0.37 to 0.42. This agrees with the universal observation that
randomly packed round grains attain a higher packing density
(i.e. a lower porosity) than grains with more irregular shapes.

The sphericity values, calculated from the previous
results and the procedure proposed in this paper, are shown
in Table 3.

The ballotini of Sample 1 appear, as is evident from
Fig. 2, to be perfect spheres with sphericity of 1.000. The
average measured sphericity turns out to be 0.988, which is
remarkably close.

The difference between Samples 4A and 4B (different
samples drawn from the same stockpile) was statistically
insignificant (« = 0.05). These values could thus be pooled to
yield an average sphericity of 0.709. Similarly, the difference
between Samples 5A and 5B turned out to be statistically
insignificant and yielded an average of 0.736 after pool-
ing. Next, the sphericity of the pooled Samples 4 and 5 was
compared. These values were indeed significantly different
(o = 0.05). In other words, the deposition of calcium carbon-
ate did have a significant, albeit small, effect of making the
grains less angular.

Sample 3A was split into 3 different size fractions, 3B,
3C and 3D, to test the earlier assumption of Eq. (4), namely,
that all the size fractions of a sample have equal sphericity.
The possibility exists that the smaller grains within a media
sample may be more shard-like and irregular. The results
presented in Table 3 show that this is not the case. In fact,
there is no statistically significant difference between the
sphericities of Samples 3A, 3B, 3C and 3D (a = 0.05). The
assumption underlying Eq. (4) is thus validated.
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The objective of this paper is to present an alternative method
for the determination of filter media, namely to use a falling-
head procedure instead of the normal constant-rate procedure.
The procedure was extensively tested and refined and a detailed
test procedure could be developed, as shown in Appendix A.

The advantage of the simpler procedure is partly off-set by
the need for more complicated data analysis, fully developed
in the paper. The analysis is illustrated with an example which
demonstrates that simple spreadsheet programming can deal
with the data analysis without any problem.

The test was validated with the results of near-perfectly
spherical glass ballottini, which yielded an experimental result
of 0.988, close to 1 as expected. The test was sensitive enough
to discriminate, with statistical significance (¢ = 0.05) between
the sphericity of clean media, and the sphericity of the same
media with some calcium carbonate deposition. The coefficient
of variation for replicate tests on the same samples (n =5 in
cach case) was less than 4%.

Acknowledgments

The media samples were obtained through the generous assist-
ance of John Geldenhuys of Rand Water Scientific Services and
the management of Silica Quartz.

References

AWWA (AMERICAN WATER WORKS ASSOCIATION) (1990)
Water Quality and Treatment. 4" edn. McGraw-Hill, New York,
1990.

CERONIO AD and HAARHOFF J (1997) Properties of South African
silica sand used for rapid filtration. Water SA 23 (1) 71-80.

DHARMARAJAH AH and CLEASBY JL (1986) Predicting the
expansion of filter media. J. Am. Water Works Assoc. 18 (12) 66-76.

FAIR GM, GEYER JC and OKUN DA (1968) Water and Wastewater
Engineering, Volume 1. John Wiley & Sons, New York.

LIDE DR (2004) (ed.) CRC Handbook of Chemistry and Physics. 85"
edn. CRC Press, Boca Raton FL, USA

SOYER E and AKGIRAY O (2009) A new simple equation for the
prediction of filter expansion during backwashing. J. Water Supply:
Res. Technol. - AQUA 58 (5) 336-345.

TRUSSELL RR and CHANG M (1999) review of flow through porous
media as applied to head loss in water filters. J. Environ. Eng. 125
(11) 998-1006.

101



Appendix A — Detailed test procedure

Part A — Media tests

Take a representative sample of the media to be tested.
Wash it gently by hand in a 250 um sieve under running
water to wash out all lumps and mud balls. Dry overnight
at 100°C.

Taking a sample of not more than 300 g, sieve it with a
sieve shaker through a stack of all available sieves below
and including 2.00 mm.

For each different sieve fraction, calculate the mass fraction
o and geometric diameter and determine the summation
terms in Eq. (4).

Take at least 3 samples of about 1 000 g each, weigh and
add to 500 mC in a 1 000 me cylinder. (To save media, if
required, good results can be obtained by using half this
mass in a 500 m{ cylinder.)

Calculate the media density for each sample and determine
the average.

Retain 500 to 600 g of dried media for the column test
described in Part C.

Part B — Empty column test

1.

Set up the empty column and ensure that the column is
exactly vertical using a post level.

Connect a hose to the inlet and block the overflow pipe with
a rubber stopper.

Open the hose and allow the water to rise in the column

to the top or at least 50 mm above the top mark. Close the
hose.

Measure the water temperature in the column with a ther-
mometer. Calculate the water density and viscosity.
Measure the distance from the top of the overflow pipe to
the top mark (%,) and the bottom mark (/).

Remove the stopper from the outlet pipe and measure
the overflow depth at the overflow pipe when the water
level reaches the top mark (4,) and the bottom mark
(h,).

Calculate h, = h,—h_.and h,= h,—h . (The distances 4, and
h,are shown in Fig. 1.)

Stopper the outlet pipe and fill the column again by open-
ing the inlet hose. Close the hose when the water level is at
least 50 mm above the top mark.

102

10.

11.
12.

Remove the stopper from the overflow pipe. Use a stop-
watch to accurately measure the time it takes for the water
to drop from the top to the bottom mark.

Repeat Steps 8 and 9 at least 3 times to get a reliable aver-
age for drop-down time.

Measure the internal diameter of the test column.
Calculate the column constant C.

Part C — Column test with media

10.
11.

12.

13.
14.

15.

Take a sample of approximately 500 to 600 g of dried
media and weigh.

Pour the media into the clean column.

Ensure that the column is exactly vertical using a post level.
Connect a hose to the inlet and block the overflow pipe with
a rubber stopper.

Open the hose and slowly fill the column from the bottom,
ensuring that no media is washed over the top.

Allow the media to settle and then gently increase the back-
wash rate to obtain a bed expansion of about 50%. Maintain
this rate until the backwash water is clear.

Suddenly close the inlet hose and wait for the media to
come to rest.

Remove the stopper from the overflow pipe. Measure the
overflow depth at the overflow pipe when the water level
reaches the top mark (%,) and the bottom mark (4,).
Calculate h,=h,—h,and h,= h,— h,. (The distances h and
h,are shown in Fig. 1.)

Repeat Steps 5, 6 and 7.

Remove the stopper from the overflow pipe. Use a stop-
watch to accurately measure the time it takes for the water
level to drop from the top to the bottom mark.

When no more water is draining from the overflow pipe,
measure the media depth from the media support grid to the
media surface. Be careful not to bump or tap the column.
Calculate the sphericity.

Repeat Steps 10, 11, 12 and 13 at least 3 times. The 1* time,
perform Step 11 immediately after Step 10. The 2™ time,
just before Step 11, give the test column a sharp sideways
tap which will cause the media surface to drop a little. The
3 time, give the column 2 taps, etc. (This is to ensure that
the sphericity is calculated for different porosities.)

Take the average of the sphericity values determined in
Step 13 and use for further design.
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Appendix B — Example of data analysis

A media sample is sieved, with the results shown as Columns
1-6 on the left of Table 4. The fractional mass contribution of
each fraction (Eq. (4)) is shown in Column 7, the geometric
mean (Eq. (3)) in Column 8 and the 2 summative twerms of Eq.
(5) in Columns 9 and 10.ia

The density of the media is determined to be 2 636 kg'm?
and the water temperature during the test is 16.0°C. The den-
sity is thus estimated to be 998.9 kg'm* (equation 7) and the
dynamic viscosity to be 0.00108 kg'm™s™ (Eq. (8)).

The test column has an internal diameter of 0.067 m and
the top and the bottom marks are 1.1 m and 0.1 m above the lip
of the overflow pipe respectively. During the empty bed test,
the overflow height over the lip of the overflow pipe is 0.025 m
when the water level is at the top mark and 0.005 m when the
water level is at the bottom mark. For the empty bed test, there-
fore, #,=1.075 m and 4, = 0.095 m. During the test with media,
the overflow depths were 0.009 m and 0.003 m respectively,
leading to 4, = 1.091 m and 4, = 0.097 m.

During the empty bed test, the average time taken for the
water level to drop from the top to the bottom mark is 22.5 s,
leading to a column constant C of 238 s>m™ (Eq. (11)).

For the media test, a dried mass of 553.8 g is transferred to
the column. The time taken for the water level to drop from the
top to the bottom mark is 54.2 s and the bed depth after this test

is 0.117 m. From these and earlier values, the porosity ¢ = 0.488
(Eq. (6)), A =8.26 (Eq. (13)) and B = 115 (Eq. (14)).

With the exception of the sphericity, all the terms in Eq.
(15) are now known:

0.097 -
2.(£+238]A | \/68;2+4.h.[£+23sj - B g
v oV W v v

h,
K j f(h,y).dh
hy

542 =

or:

t =

By choosing an approximate value for the sphericity y, the time
t can be calculated. Successive approximations continue until
the calculated time is close enough to the measured time. If
Simpson’s rule is applied with 10 equal height intervals (others’
methods can also be used, of course), then a solution is offered

by:

+2h; +4h, +hk)

t = K(h‘;%j(ha +4h, +2h, +4h, +

A convenient way of finding the best approximation for the
sphericity v is to use the ‘Goal Seek’ function in Excel to
change y until the measured and estimated times are the same.
In this particular example, the solution is given by y = 0.729.

Table 4
Analysis of sieve test data of typical filter media
Sieve Mass Mass Mass Mass % o Geometric ald o/ d?
(um) (before) (after) (on) (through) | (through) (-) mean (m-) (m?)
(9) (9) (9) (9) (%) (m)
2000 480.79 480.84 0.05 355.26 100.0%
0.0003 0.00184 0.2 91
1700 394.32 394.43 0.11 355.15 100.0%
0.0035 0.00154 23 1 466
1400 391.31 392.55 1.24 353.91 99.6%
0.0013 0.00129 1.0 767
1180 387.10 387.55 0.45 353.46 99.5%
0.1180 0.00109 108.6 99 960
1 000 372.43 414.34 41.91 311.55 87.7%
0.3364 0.00092 364.8 395 711
850 339.10 458.61 119.51 192.04 54.0%
0.3421 0.00078 440.3 566 806
710 493.14 614.68 121.54 70.50 19.8%
0.1359 0.00065 208.2 318 970
600 312.31 360.59 48.28 22.22 6.3%
0.0398 0.00055 72.7 132 654
500 290.92 305.06 14.14 8.08 2.3%
0.0124 0.00046 26.9 58 276
425 292.73 297.13 4.40 3.68 1.0%
0.0076 0.00036 21.4 59 821
300 278.94 281.65 271 0.97 0.3%
0.0010 0.00027 3.8 13 885
250 271.92 272.29 0.37 0.60 0.2%
0.0017 0.00016 10.7 67 547
Pan 411.85 412.45 0.60 0.00 0.0%
Sum 355.31 1260.7 | 1715953
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