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Abstract

The feasibility of using constructed wetlands (CWs) for the mitigation of pesticide runoff has been studied in the last
decade. However, a lack of related data was verified when subsurface flow constructed wetlands (SSF CWs) are considered
for this purpose. In the present work, SSF CWs were submitted to continuous ametryn addition and evaluated during an
11-week period, with the aim of determining the feasibility of these systems for mitigation of contaminated water. Ametryn
was not added to one CW cell in order to provide a control for the experiments. Monitoring of treatment performance was
executed by standard water quality parameters, ametryn chromatography quantification and macrophyte (Typha latifolia L.)
nutritional and agronomic property analysis. Results indicated that 39% of the total initially added amount of ametryn was
removed, transferred or transformed. Herbicide metabolism and mineralisation were carried out by chemical and biological
mechanisms. No statistic differences were observed in nutritional contents found in the T. latifolia crops of the CWs after
the experimental period. Moreover, the biomass production (one valuable source of renewable energy) was equal to 3.3 t-ha-
(dry matter) in wetland cells. It was concluded that constructed wetland systems are capable of mitigating water contami-
nated with ametryn, acting as buffer filters between the emission sources and the downstream superficial water bodies.
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Introduction

In response to the increasing demands for agricultural pro-
ductivity, it has been observed over the past 50 years that
there has been a significant increase in the production and use
of pesticides in general and particularly in herbicides (FAO,
2009). This increase in pesticide use may cause ecological and
sanitary risks to the users of water bodies polluted with active
ingredients from these agrochemicals.

Ametryn, whose IUPAC name is N-ethyl-N’-(1-methyl-
ethyl)-6-(methylthio)-1,3,5-triazine-2,4-diamine), is an impor-
tant member of the triazines group and is used as a systemic
herbicide mainly in the sugarcane, citrus, coffee and corn
crops. Its decontrolled use, in addition to its physicochemical
characteristics (Table 1), may result in the detection of poten-
tially harmful concentrations in runoff waters from these crop
lands.

Based on the proven purification capability of natural
wetlands constructed wetland (CW) systems have been suc-
cessfully used for the treatment of several types of point and
nonpoint sources of pollution (IWA, 2000). Although used for
wastewater treatment and nutrient removal, the use of CWs
for the mitigation of contaminant pesticides is still considered
incipient (Runes et al., 2003).

Over the past decade, studies have been performed with
free water surface-flow (FWS) and open-pond wetlands

TABLE 1
Physicochemical properties and characteristics of
ametryn (Adapted from USDA, 2006)

Structure

Molecular weight (grmol?) 227.33

Water solubility at 20°C (g'm*®) | 204

Vapor pressure (mPa) 0.37

log K., 113

K, (cm*g?) 316 ~ 445
K,, (Pa m*mol?) 4.14E-04
lonisation constant, pK_ 4.1
Half-life in water (d) 22
Half-life in soil (d) 53 ~ 190
Aquatic acute toxicity Moderate
Leachable Potential
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(Kadlec and Hey, 1994; Moore et al., 2000; Schulz et al.,
2003; Rose et al., 2006). Few experiments have been reported
in relation to subsurface flow (SSF) constructed wetlands
(also known as reed-bed systems). McKinlay and Kasperek
(1999) verified the reduction of atrazine concentration in

CW cells with effluent re-circulation. Cheng et al. (2002)
confirmed that the studied SSF CWs removed insecticides
more efficiently than herbicides, considering that analysis
was performed 4 months after pesticide application. George
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TABLE 2
Experimental results obtained in subsurface flow constructed wetlands treating pesticides
Pesticide HRT Area Initial conc. | Removal |Reference
(d) (m?) (g-m=) (%)
Atrazine n.r. 1.2 6.0~70 >99 McKinlay and Kasperek (1999)
Dicamba n.r. 1.0 1.5E-03 0 Cheng et al. (2002)
MCPA n.r. 1.0 2.8E-03 36 Cheng et al. (2002)
Parathion n.r. 1.0 2.0E-03 100 Cheng et al. (2002)
Metolachlor 23~20 59~11.8 n.r. 82~90 |Stearman et al. (2003)
Simazine 2.3~20 59~11.8 n.r. 77~83 |Stearman et al. (2003)
Metolachlor 2.3~20 59~11.8 3.9 62 ~96 |George et al. (2003)
Simazine 2.3~20 59~11.8 6.2 60~96 | George etal. (2003)
Lindane 5~6 55.0 25 >99 Matamoros et al. (2007)
Simazine 5~6 55.0 2.5 20 Matamoros et al. (2007)
Alachlor 5~6 55.0 25 80 Matamoros et al. (2007)

n.r.: not reported

et al. (2003) and Stearman et al. (2003) proved the importance
of the vegetative component (macrophytes) for simazine and
metolachlor treatment.

According to Dordio et al. (2007), intensive action between
plant rhizomes, microorganisms and matrix components can
decrease pesticide concentration to levels that are safe for
aquatic biota. However, Lin et al. (2008) recently observed that
the increase of salinity in SSF CWs could inhibit the action of
atrazine degrading microorganisms. Table 2 summarises the
reported results when SSF CWs were used for the reduction of
pesticide levels.

This research focused on the examination of ametryn in 4
subsurface flow constructed wetland cells operated under con-
tinuous loading of herbicide-contaminated water. The objec-
tives of the research included the following:

* Determination of process efficiency based on the mass of
ametryn removed in the CWs

» Study of the influence of operational factors on the CWs
performance

»  Verification of the nutritional conditions and agronomic
performance of the macrophytes cultivated in the cells after
the study period

Materials and methods
Four experimental CW cells were used in this study. CWs

were constructed in parallel and walls were built with cement
blocks. They were sealed with a watertight polyvinyl-chloride
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Figure 1
Schematic of
the subsurface
flow constructed
wetland systems for
treating of ametryn-
contaminated water

geo-membrane measuring 0.50 mm in thickness and presented
overall dimensions of 0.35 m in height x 1.0 m in width x 24.0
m in length.

Fine gravel (D60 = 7.0 mm and uniformity coefficient equal
to 1.6) was used as a substrate for the macrophytes and Typha
latifolia L. (common cattails) was grown in the CWs. Distribu-
tion and collection of the ametryn-contaminated water was
monitored both upstream and downstream of each CW reser-
voir; this made it possible to calculate the daily water balance
of the cells. A schematic presentation of the subsurface flow
constructed wetland system is shown in Fig. 1.

Over a period of 11 weeks, ametryn-contaminated water
was applied to CW Cells A, C and D, with varying bottom
inclinations and total volumes: Cell A (0.5% and 5.70 m?), Cell
C (1.0% and 4.40 m®), Cell D (1.5% and 3.30 m®). Cell B (1.0
% and 4.40 m®) was used as the control, receiving raw water
free of ametryn. The solution added to the systems (1 g'm?
ametryn-nominal concentration) was prepared from the dilu-
tion of the Metrimex 500SC™ (Sipcam Agro Co.) herbicide in
raw water.

All systems were operated with the same hydraulic reten-
tion time (HRT). The applied flow rates corresponded to
0.77 méd* for Cell A, 0.60 m3-d* for Cell C and 0.45 m3-d+*!
for Cell D. Due to evapotranspiration observed in the cattail
culture, part of the resident liquid in CWs was lost, therefore
actual HRT values were superior to the 3.5 d initially proposed.

Samples were collected twice a week from the influent,
at the CW midpoint and from the effluent of each of the Cells
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TABLE 3
Results obtained for quality parameter concentrations in the equalisation tank
influent, mid-point (12 m) and effluent points of CWs
Parameter Influent Cell A Cell C Cell D
12m Effluent 12m Effluent 12m Effluent

COD® (g'm?®) 19 32 40 40 22 36 27

Turbidity (uT) 13 9 15 1 4 7 13

EC® (uS-cm™) 55 74 105 65 98 64 94

pH 7.0 6.2 6.7 6.4 6.8 6.6 6.8

TAO (g'm?®) 21 32 56 29 48 27 49

X Organic matter expressed as chemical oxygen demand (COD)

Electrical conductivity

“Total alkalinity measured as CaCo,
A, C and D, for laboratory analysis. At the end of the studied 500
period, cuts were made in the vegetative sections (leaf tissues) ® Influent
of all cells for nutritional analysis of the used macrophytes. g 400 _© Efluent
Samples of the support material were analysed for organic mat- 2 i al
ter. The samplings performed at the end of the study were done g 300 1 (™ . ==
in portions of 2 m? located at the beginning, middle and final 2 200 1 mus anm " o o
portions of each CW (A, B, C and D). These procedures were % i ®o, W° ° m _"m o®
executed in order to evaluate the possible absorption of pesti- g 100 °o : °
cides in the organic material present in the CW. i °©0°

After extraction in the liquid phase with acetonitrile and 0 —

ethyl acetate, according toVieira et al. (2007), the herbicide 0 10 20 30 40 50 60 70 80
was quantified with a gas chromatograph Shimadzu GC-17A Time (d)
(Shimadzu Co.) operating with Class-CR10 software, and Figure 2

equipped with a flame ionisation detector (FID) at 300°C and
BP-5 column (J&W Scientific). For ametryn quantification,
peak areas were observed and concentrations determined using
the standard curve prepared by the addition of known standard
concentrations. For the blank sample, no peak was observed

at the retention time for analyte. The analytical standard was
supplied by Sipcam Agro Co. (95.9 % m/m). Chemical oxygen
demand, turbidity, conductivity, temperature, total solids and
alkalinity were monitored according to Standard Methods
(2005), methods 5220, 2130, 2510, 2550, 2540 and 2320B.
Nitrogen, phosphorus, potassium, calcium and sulphur concen-
trations in the leaf tissues were also quantified. Organic matter
in the gravel beds was quantified by igniting the samples under
controlled conditions.

The possible significant differences among the data (o =
0.05) were observed with the use of Lillierfors and Bartlett
tests (for normality and homogeneity verification) followed
by application of statistical tests, when pertinent: Parametric
tests were utilised when equality of variance from the Bartlet
test was p > 0.05 and non-parametric tests were used when the
equality of variance was p < 0.05.

Results and discussion

Calculations necessary to obtain the water balance in the CWs
were made based on local weather station data and daily gaug-
ing of the effluent volumes in the downstream tanks. The mean
value for the culture evapotranspiration (ETc) in CWs was

5.7 mm, while mean values of ETo (according to Hargreaves’
method) and ET (Class A) were 4.6 mm and 3.7 mm, respec-
tively. The percentage of water lost in relation to volume of
influent added to the CWs was about 12% to 24%, being lower
than the values observed in arid areas or in CW cells operat-
ing at higher temperatures. However, these loss estimates are
comparable to those made by Brasil et al. (2007), who reported
percentage volume decreases of between 11% and 27%.
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Ametryn mass reduction in SSF constructed wetland systems

Reduction of the mean flow rates due to macrophyte eva-
potranspiration provided a rapid modification in the mean HRT
in CWs and an increase in the solutes concentration in the
effluent, as observed in Table 3. Several researchers including
Green (2006) and Mara (2006) also discuss such observations.
Evaluation of herbicide removal efficiency was made by quanti-
fying mass loads applied and recovered.

For comparison of the cells, samples taken over the entire
experimental period were considered. The effluent concentra-
tions did not present significant difference (o = 0.05) when the
Kruskal-Wallis test was applied. Therefore, average values of
the cells were used for comparison since the number of valid
analyses was reduced (between 23 and 26) due to occasional
contamination during sampling.

Figure 2 illustrates the ametryn contents based on the com-
putation of moving averages (2 weeks) of the mass loads in the
3 contaminated CW cells. The average influent contents were
significantly different from the average effluent contents.

Operating with a HRT of 3.8 d, the systems removed/
transformed approximately 39% of the added ametryn. When
compared to previously published data, these values are consid-
ered low. However, in the present work, ametryn was applied
continually and therefore greater quantities were administered
with higher superficial loading rates [M.L2.T1].

In a similar experiment, but with a vertical flow pathway,
Cheng et al. (2002) observed that herbicides are removed at
slower rates when compared to insecticides. The authors veri-
fied that the insecticide parathion was not detected at the exit of
the CWs. Observed removal of dicamba and MCPA (herbicides)
were 0% and 36%, respectively.

The non-recovered fraction in the effluent of CWs was
assumed to be transformed and stored by biotic and abiotic
processes in the constructed wetland systems. The added
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Figure 3
Average nutrient contents in leaf tissues of cattails cultivated
in CW ‘B’ and CW ‘C’

herbicide is slightly volatile (P < 1.33 mPaand K , < 0.1 Pa
m®mol?), thus the implementation of sub-superficial type flow
reduces the likelihood of any significant photodegradation
activity.

Ametryn has a high water solubility of 204 g-m?=. Highly
soluble pesticides tend to present reduced K . and K values,
promoting absorption and translocation processes in the plant.

These properties account for the low affinity of ametryn for
soil colloids, making the herbicide potentially leachable. Moore
et al. (2000), studying the mitigation effects of atrazine (the
world’s most used triazine herbicide), did not detect pesticide
concentrations in the sediment of the used wetlands. Consider-
ing that when concentrations of atrazine are present in both
sediment and water phases, phytotoxicity was generally deter-
mined by the concentration in the water, and researchers then
opted for analysis of the aqueous phase. In the present study,
the presence/absence of organic matter (OM) in the gravel beds
was investigated. The fact the most inclined CW presented a
greater OM/gravel ratio did not imply greater efficiency due to
sorption. Therefore, in agreement with data reported by Mata-
moros et al. (2007), sorption by gravel could be neglected due
to the biodegradation, plant uptake and desorption processes
occurring in CW cells.

The HRT in the CW cells provided greater influence com-
pared to other operational parameters. Stearman et al. (2003)
observed that SSF CWs operating with HRT of 5.1 d were more
efficient than systems with HRT of 2.3 d. The same observation
was made in surface-flow CWs for atrazine treatment (Moore
et al., 2000; Runes et al., 2003). In relation to the applied flow
rates and the different bottom inclinations, it was suggested
that the absence of apparent discrepancies was due to factors
including scale problems and magnitude of the observed pesti-
cide values (reduced and difficult detection levels).

The nutritional performance of the plants was analyzed
based on the yield of dry matter and by analysis of macrophyte
nutrients in each treatment. Figure 3 shows the mean values
regarding nutrient levels observed in the CW “C’, subjected
to the pesticide and in the CW control ‘B’ (both CWs had the
same bottom slopes of 1.0%). Comparing the averages of all
CW cells (A, B, C and D), the nutritional analysis accomplished
at the end of the studied period did not present significant sta-
tistical difference (o = 0.05).

Although the function of macrophytes is sometimes con-
tested, they play an important role in absorption of ametryn.
During implantation of vegetation, macrophytes provide a
unique environment for the survival of microorganisms in sub
superficial sites of CWs. In the present study, harmful effects
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were not observed in the vegetative portion (leaf tissues) of the
plants when a nutritional analysis was performed and compared
with the control CW. Recently, some authors including Moore
et al. (20006), verified that vegetated cells were more efficient
for methyl-parathion mitigation; moreover, the possible energy
use of the macrophyte biomass is also a factor to be considered.

In microbial degradation, mentioned by McKinlay and
Kasperek (1999) as the main process in atrazine degradation in
CWs, it is known that this process is accelerated in vegetated
CW cells due to the biofilm formed in the sub superficial area
and these microbes depend on availability of nutrients and the
adaptation capacity of the species to the introduced compound.
More studies on ametryn transformation are required since
there are few studies concerning this pesticide when compared
with other herbicides, such as atrazine for instance.

Conclusions

As observed in the field study using treatment systems with
applied water losses, the water balance must be calculated since
solutes are more concentrated in the effluent. It was estimated
that 12% to 24% of water was lost.

The amount of ametryn detected in the CW effluents was
estimated to be 61% of the initially added amount. The remain-
ing fraction was transformed and retained by biotic and abiotic
processes in the CWs. It was verified that CWs with different
slope inclinations did not present significant performance dif-
ferences. Increase of the effective HRT is an operational strat-
egy to be considered, allowing longer contact times between
the herbicide and the root system with the adhered microbial
population.

Macrophytes play an important role in this process. Besides
the absorption of the herbicide composition, the implantation
of the vegetative portion provides a unique environment for
the multiplication of microorganisms in sub-superficial sites of
CWs. In the present study, harmful effects were not observed in
the vegetative part of the plants when nutritional analyses were
performed and compared with the control cell.

Constructed wetland systems are capable of retaining and
transforming pesticides, acting as filters between the emission
source and the superficial water bodies. Environmental man-
agement plans elaborated by governmental organisations with
the support of landowners, could use these CW systems in the
mitigation of the environmental pollution. However, there is an
observed need for more studies on pesticide removal processes
in CWs as well as better control of emission sources of these
diffuse pollutants.
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